Aurora H₂O **User's manual**

910-284 Rev. J

ATTENTION! This manual is intended for units with S/N 3999 (software v.001.A through v.001.U) or lower only. [For units with S/N above 3999, use manual 910-317.]

Aurora H₂O

Moisture analyzer for natural gas

User's manual

910-284 Rev. J April 2017

ATTENTION!

This manual is intended for units with S/N 3999 (software v.001.A through v.001.U) or lower only. [For units with S/N above 3999, use manual 910-317.] [no content intended for this page - proceed to next page]

Contents

Pro	duct registration	ix
Ser	vices	.ix
Тур	oographical conventions	ix
Saf	ety issues	ix
	xiliary equipment	
	/ironmental compliance	
LIIV		~
Chap	ter 1. Features and capabilities	.1
1.1	Overview.	.1
1.2	Features	1
1.3	Theory of operation	. 2
1.4	Specifications	. 8
	1.4.1 Power	
	1.4.2 Range	
	1.4.3 Accuracy	
	1.4.4 Response time	.8
	1.4.5 Operating pressure	
	1.4.6 Temperature	.8
	1.4.7 Flow rate	.8
	1.4.8 Display	.8
	1.4.9 Inputs/outputs	.8
	1.4.10 Enclosure	.8
	1.4.11 Laser certification	.8
	1.4.12 User interface	.9
	1.4.13 Weight and dimensions	
	1.4.14 Hazardous area certification.	
	1.4.15 European certification	
	1.4.16 Software	
	1.4.17 Sampling system	
	1.4.18 Wetted components	.9
Chap	ter 2. Installation	11
2.1	Introduction	
2.2	Bill of materials	
2.3		
2.4		
2.5		
2.6	Mounting	
2.7	Optional insertion probe/regulator	
	2.7.1 Description.	
	2.7.2 Installation	
	2.7.3 Setting the pressure	
2.8	Making electrical connections	.17
2.9		

Chapte	er 3. (Operation and general programming	23
3.1	Using	J the Aurora H2O	23
3.2	Samp	ble system	. 23
	3.2.1	Aurora H2O startup	. 23
	3.2.2	Aurora H2O shut down	. 23
	3.2.3	Aurora H2O purge gas connection	. 23
3.3	Кеур	ad features	25
	3.3.1	Indicator lights	. 25
	3.3.2	The magnetic stylus	. 25
	3.3.3	The default display	. 25
	3.3.4	Unlocking the keypad	. 26
	3.3.5	Keypad lock-out switch	
	3.3.6	Accessing the menus	
	3.3.7	Entering numeric values	
		Starting up	
3.4	Settir	ng up the display	
	3.4.1	Selecting primary units	
	3.4.2	Selecting alt 1 and alt 2 units	
	3.4.3	Setting decimal places	
		Data/scan	
	3.4.5	Adjust	
		Reverse	
3.5		ng up the outputs	
	3.5.1	Selecting an output for setup	
	3.5.2	Selecting output units	
	3.5.3 3.5.4	Selecting an output type	
	3.5.4 3.5.5	Changing the upper output span Changing the lower output span	
	3.5.6	NAMUR response	
		Testing the output.	
		Trimming the outputs	
3.6		ng up the alarms	
0.0	3.6.1	Selecting an alarm output	
	3.6.2	Selecting alarm status	
	3.6.3	Selecting alarm units	
	3.6.4	Selecting an alarm type	
	3.6.5	How the alarm types work	
	3.6.6	Changing the upper alarm span	. 34
	3.6.7	Changing the lower alarm span	. 34
Chapte	er 4. I	Programming advanced features	35
4.1	Com	m port settings	. 35
	4.1.1	Selecting a comm port	
	4.1.2	Setting the baud rate	
	4.1.3	Setting parity	
	4.1.4	Selecting protocol.	
	415	Setting the network ID	. 36

4.2	Adjust offset values	37
	4.2.1 Adjusting the PPMv offset	.37
	4.2.2 Adjusting the smoothing filter	
	4.2.3 Adjusting the scan averaging	
	4.2.4 Setting the dew point calculation method	38
4.3	Set up the background gas	39
	4.3.1 Selecting the type of gas	39
	4.3.2 Setting the Z factor	
	4.3.3 Entering a label	
	4.3.4 Adjusting the gas offset	
4.4	Clock settings.	
	4.4.1 Resetting the hour	
	4.4.2 Resetting the minutes	
	4.4.3 Resetting the month	
	4.4.4 Resetting the date	
	4.4.5 Resetting the year	
4.5	Pressure settings	
	4.5.1 Setting pressure units	
	4.5.2 Setting the source.4.5.3 Changing the constant	
	4.5.4 Editing pressure calibration	
4.6	Regional settings	
4.0	4.6.1 Setting the country code	
	4.6.2 Setting the decimal format	
	4.6.3 Setting the date format	
	4.6.4 Setting the unit system.	
4.7	User calibration	46
4.8	Service settings	47
	Aurora H2O information	
	4.9.1 Checking the ID	
	4.9.2 Checking the system status	48
	4.9.3 Checking the software	48
	4.9.4 Checking the gas composition	48
	4.9.5 Checking the alternate gas composition	49
4.10	Locking/unlocking the display	49
-	er 5. AuroraView interface software	
5.1	Capabilities	
5.2	Requirements	51
5.3	Installing AuroraView	52
5.4	Starting AuroraView	54
5.5	Using the main menus	56
5.6	Datalogging with AuroraView	58
5.7	Working with trend plots, trend tabular data and scan plots	59

Chapt	er 6. Maintenance	}
6.1	Spare parts	3
6.2	Cleaning the mirror	ŀ
	6.2.1 Instructions for optical absorption cell style 1	5
	6.2.2 Instructions for optical absorption cell style 2	1
6.3	Replacing the filter element)
Chapt	er 7. Troubleshooting	1
7.1	Introduction	I.
7.2	Blank display	I.
7.3	Display dim or hard to read	I.
7.4	Status messages and indicators	I.
7.5	No flow measurement indicated on Aurora H2O measurement cell outlet	\$
7.6	Verifying Aurora H2O performance in the field	\$
	7.6.1 Using a portable hygrometer	3
	7.6.2 Using a moisture standard	3
7.7	Background selection lockout	ł
Appen	dix A. MODBUS RTU/RS485 communications	5
A.1	Introduction	5
A.2	Modbus functions and data types	5
	Modbus registers	
	Modbus system status codes	

Product registration

Thank you for purchasing a model **Aurora H2O** from Panametrics. Please register your product at https://info. bakerhughesds.com/New-product-registration-LP for product support such as the latest software/firmware upgrades, product information and special promotions.

Services

Panametrics provides customers with an experienced staff of customer support personnel ready to respond to technical inquiries, as well as other remote and on-site support needs. To complement our broad portfolio of industry-leading solutions, we offer several types of flexible and scalable support services including: training, product repairs, service agreements and more. Please visit https://www.bakerhughesds.com/panametrics/services for more details.

Typographical conventions

NOTE: These paragraphs provide information that provides a deeper understanding of the situation, but is not essential to the proper completion of the instructions.

IMPORTANT

These paragraphs provide information that emphasizes instructions that are essential to proper setup of the equipment. Failure to follow these instructions carefully may cause unreliable performance.

CAUTION!

This symbol indicates a risk of potential minor personal injury and/or severe damage to the equipment, unless these instructions are followed carefully.

WARNING!

This symbol indicates a risk of potential serious personal injury, unless these instructions are followed carefully.

Safety Issues

WARNING!

It is the responsibility of the user to make sure all local, county, state and national codes, regulations, rules and laws related to safety and safe operating conditions are met for each installation.

Attention European customers!

To meet CE Mark requirements for all units intended for use in the EU, all electrical cables must be installed as described in this manual.

Auxiliary equipment

Local safety standards

The user must make sure that he operates all auxiliary equipment in accordance with local codes, standards, regulations, or laws applicable to safety.

Working area

WARNING!

Auxiliary equipment may have both manual and automatic modes of operation. As equipment can move suddenly and without warning, do not enter the work cell of this equipment during automatic operation, and do not enter the work envelope of this equipment during manual operation. If you do, serious injury can result.

WARNING!

Make sure that power to the auxiliary equipment is turned OFF and locked out before you perform maintenance procedures on this equipment.

Qualification of personnel

Make sure that all personnel have manufacturer-approved training applicable to the auxiliary equipment.

Personal safety equipment

Make sure that operators and maintenance personnel have all safety equipment applicable to the auxiliary equipment. Examples include safety glasses, protective headgear, safety shoes, etc.

Unauthorized operation

Make sure that unauthorized personnel cannot gain access to the operation of the equipment.

Environmental compliance

RoHS

The Aurora H2O fully complies with RoHS regulations.

Waste Electrical and Electronic Equipment (WEEE) Directive

Panametrics is an active participant in Europe's Waste Electrical and Electronic Equipment (WEEE) take-back initiative (Directive 2012/19/EU).

The equipment that you bought has required the extraction and use of natural resources for its production. It may contain hazardous substances that could impact health and the environment.

In order to avoid the dissemination of those substances in our environment and to diminish the pressure on the natural resources, we encourage you to use the appropriate takeback systems. Those systems will reuse or recycle most of the materials of your end of life equipment in a sound way.

The crossed-out wheeled bin symbol invites you to use those systems.

If you need more information on the collection, reuse and recycling systems, please contact your local or regional waste administration.

Please visit https://www.bakerhughesds.com/health-safetyand-environment-hse for take-back instructions and more information about this initiative.

Chapter 1. Features and capabilities

1.1 Overview

Panametrics' **Aurora H2O** *moisture analyzer for natural gas* makes it possible for natural gas processing and transportation facilities to monitor moisture content in real-time with high precision and reliability.

The **Aurora H2O** analyzer uses tunable diode laser absorption spectroscopy (TDLAS) to measure moisture in natural gas at the speed of light. The analyzer is suitable for installation in hazardous areas and operates over a wide range of environmental conditions. **Aurora's** fast response quickly alerts and documents when moisture concentrations are out of compliance. Once process upsets are corrected and the gas dries out, the fast response quickly enables natural gas to be cleared for entry into the "energy grid".

Class 1 laser product

WARNING!

Use of controls or adjustments or the performance of procedures other than those specified herein may result in hazardous laser exposure.

1.2 Features

- Optical response: < 2 seconds after flow cell is purged. No cross sensitivity to glycols or amines.
- Direct readout in lbs/mmscf, mg/m³ or ppm.
- Reads process pressure dew point (with user programmable constant or live auxiliary input for process pressure).
- Turnkey sampling system specifically designed for natural gas applications ensures measurement integrity.
- Magnetic stylus enables through-glass programming hot permit not required to field program.
- Explosion-proof/flameproof design
- 4-20 mA signals and RS-232/485 MODBUS RTU for connection to SCADA or plant monitoring system.
- Supplied with **AuroraView** software for remote configuration, data logging and data retrieval capacity.
- NIST traceable calibration.
- In conformance with IEC 60825-1 edition 2.0, Safety of laser products.

1.3 Theory of operation

The Panametrics **Aurora H2O** (*tunable diode laser absorption spectroscopy*) hygrometer for natural gas is a system designed to continuously monitor the moisture content in natural gas. It fundamentally measures the partial pressure of water vapor (water in the gas state), and with the simultaneous measurement of pressure and temperature, provides readings and both analog and digital signal transmission of user-selectable moisture parameters including dew point temperature, volume ratio and absolute humidity (lbs/MMSCF or mg/m³) in addition to temperature and pressure.

The **Aurora H2O** is supplied with an integrated sampling system which includes an optional pipe-mounted liquid separator and pressure reducing valve/regulator, and the following components mounted within a stainless steel enclosure: isolation valve, coalescing filter, coalescer flow control valve, sample cell control valve, second pressure reducing valve/regulator, and flow indicator (rotameter), as well as an optional electrical heater and thermostat.

The fundamental water vapor pressure measurement is based on the *Beer-Lambert Law*:

$$A = In \left(\frac{I_o}{I}\right) = SLN$$

where: A = absorbance

- I = Light intensity transmitted through a sample gas
- I_o = Incident light intensity
- S = Absorption coefficient*
- L = Absorption path length (a constant)
- N = Concentration of the water vapor in the absorption cell

* The absorption coefficient is a constant for a specific gas composition at a given pressure and temperature.

The concentration of the water is directly related to the partial pressure. At certain specific frequencies, light energy will be absorbed by water molecules. As the concentration of water increases, the absorption also increases. The **Aurora H2O** sweeps the diode laser output across a narrow band in the near infrared spectrum and, by measuring the light intensity with a photo detector, is able to provide a direct indication of the partial pressure of water. The partial pressure, multiplied by 10⁶ and divided by the total pressure, yields the volume ratio in ppmv (parts per million by volume).

The laser diode is housed in a hermetically sealed and dry housing. The light is transmitted through a window made of proprietary transparent material. The light travels through a stainless steel cell and is reflected off a gold-plated mirror and returned to a photo detector, where the light intensity is measured. Since only light comes in contact with the sample of natural gas, and all of the wetted materials are made of non-corrosive and inert materials, this technology does not exhibit the drift associated with gas contacting sensor-based hygrometers. The diode laser emits low energy light, and therefore the system will not ignite the gas. The complete system is rated explosion-proof, and the **Aurora H2O** provides very fast response time. Once the absorption cell (see *Figure 1 below*) is purged, the response time is a matter of a few seconds.

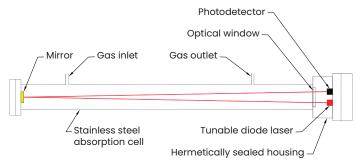


Figure 1: Laser absorption cell, basic elements

The control of the laser, power supply and signal conditioning circuitry are housed in an explosion-proof transmitter enclosure. A backlit, three-parameter, LCD display provides digital indication of user-programmable parameters. The **Aurora H2O** has three user-programmable (4-20 mA) analog outputs and two programmable digital ports that may be configured as either RS-485 or RS-232 with modbus protocol. The analyzer has an auxiliary analog input (4-20 mA) input that is used for connection to an optional process pressure transmitter. Measurement of the process pressure enables the **Aurora H2O** to display and transmit the process dew point. **AuroraView** software is provided and enables remote readings, programming data logging and data logging with a personal computer.

The **Aurora H2O** hygrometer is calibrated against an NIST (or other national metrological institute) traceable reference dew/point generator and hygrometer. Each system is supplied with a certificate of calibration with functional test data.

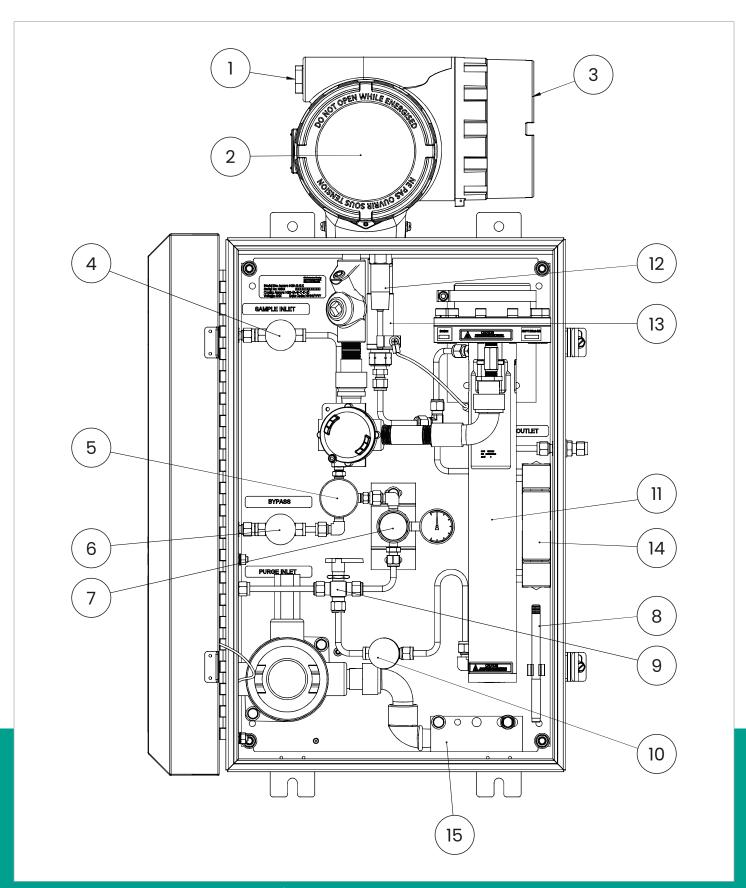


Figure 2: Aurora H2O system assembly with optional USA/CAN heater

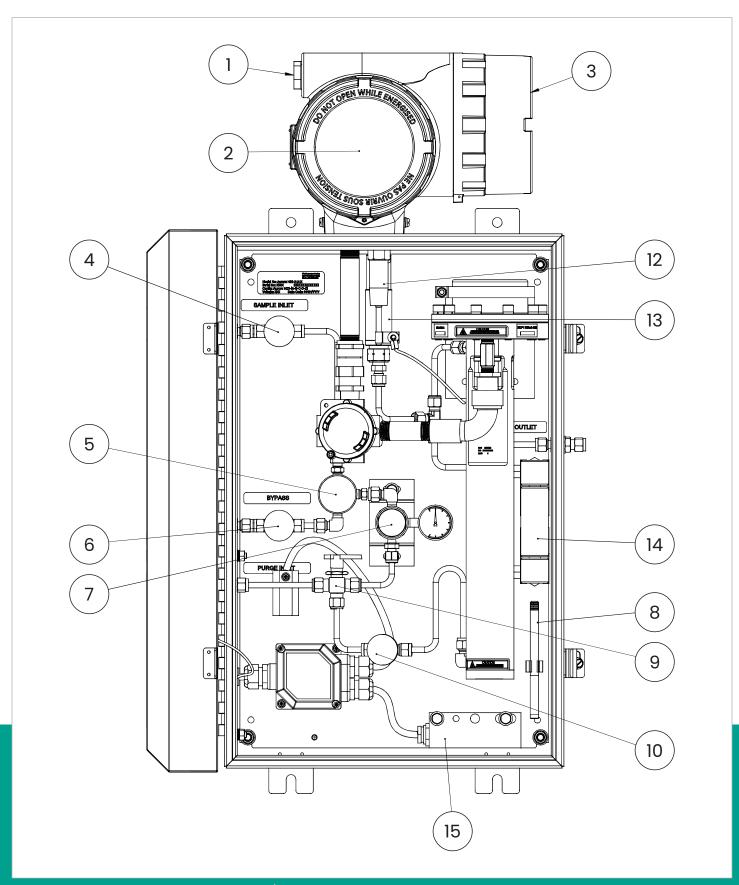


Figure 3: Aurora H2O system assembly with optional EU/ATEX heater

NOTE: Refer to *Table 1 on page 5* and either *Figure 2 on page 3* or *Figure 3 on page 4* to identify your **Aurora** components.

Table 1: Aurora H2O system parts list		
No.	Description	
1	Conduit I/O	
2	Display and magnetic stylus keypad	
3	Wiring terminals	
4	Isolation valve (needle valve)	
5	Membrane filter	
6	Membrane filter drain and fast loop vent	
7	Pressure regulator w/ 0-10 psig outlet pressure gauge	
8	Magnetic stylus	
9	Process or purge gas selector	
10	Purge gas inlet needle valve	
11	Absorption cell	
12	Temperature sensor	
13	Pressure sensor	
14	Rotameter	
15	Optional heater, thermostat, junction box	

IMPORTANT

The filter installed within the **Aurora** is designed to function as a secondary filter. A primary filter or filter train should be used upstream of the analyzer. Do not sample directly from the process gas to the **Aurora** without the use of a primary filter and pressure reduction. The pressure inlet to the **Aurora** sample inlet should not exceed 500 psig. For natural gas, a pipeline insertion membrane filter is recommended as shown in *Figure 4 on page 6*. The installation of the insertion filter is described in this manual. The insertion filter also is equipped with a pressure regulator which functions to reduce the pressure. If it is not possible to install the insertion filter, consult Panametrics application engineers for information about a sample conditioning system.

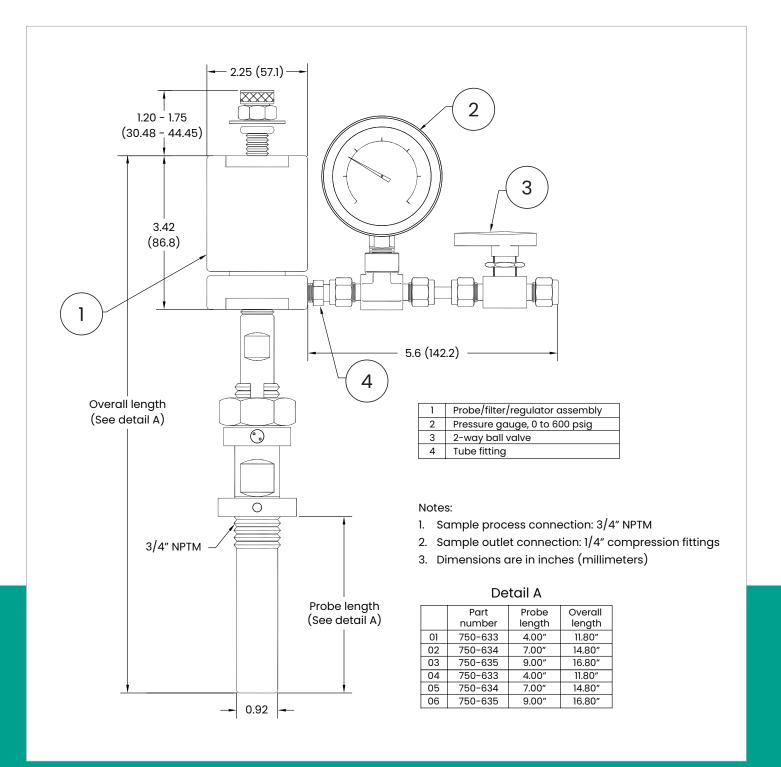


Figure 4: Sample system (ref. dwg #733-737)

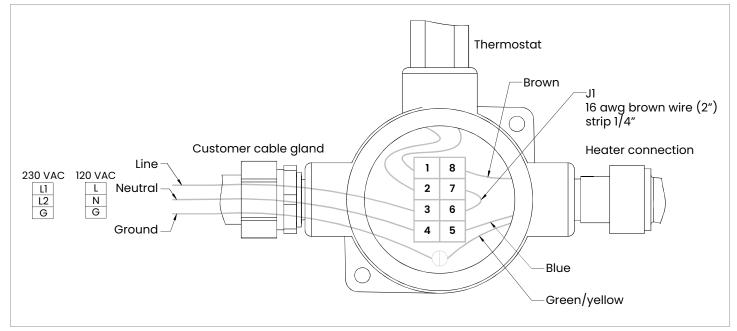
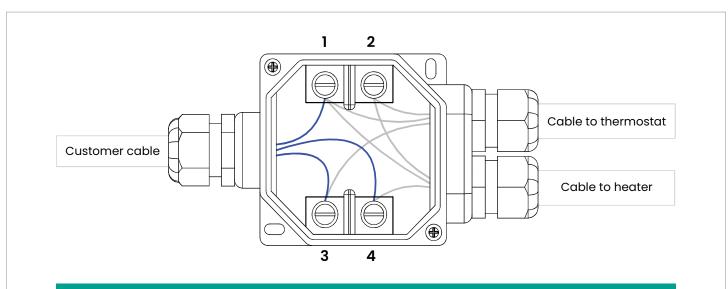



Figure 5: USA/CAN heater wiring diagram

Cable function	Conductor	Color	J-box terminal
	Line 1	Brown	3
Customer power	Line 2	Blue	4
	Ground	Green/yellow	1
	Line 1	Brown	2
Thermostat	Line 2	Blue	3
	Ground	Green/yellow	1
	Line 1	Brown	2
Heater	Line 2	Blue	4
	Ground	Green/yellow	1

1.4 Specifications

1.4.1 Power

Analyzer: 100-240 VAC, 50-60Hz, 10W 18-32 VDC (24 VDC nominal), 10W

Optional electrical heater: 120VAC, 120W 230VAC, 75W

1.4.2 Range

Part per million by volume 5 to 5000 ppm_v

Dew/frost point* 85.9°F to 27.3°F) (-65.5°C to -2.6°C)

Process dew/frost point*

Process or equivalent dew point/frost point by calculation with process pressure signal (4-20 mA) or constant

Absolute humidity

3.8 to 3803 mg/m³ (0.24 to 237 lbs/MMSCF)

*Readings below 0°C (32°F) are in "frost point" temperature, and above 0°C (32°F) are in "dew point" temperature.

1.4.3 Accuracy

Parts per million by volume

 $\pm 2\%$ of reading in ppm_v or 4 ppm_v (Accuracy of other parameters derived from ppm_v)

1.4.4 Response time

Optical response

<2 seconds

System response

The system response is dependent upon the length of sample tubing, sample system components, flowrate and pressure, as well as the change in moisture concentration.

1.4.5 Operating pressure

Operating sample cell pressure:

69 to 172 kPa (10 to 25 psia)

Maximum pressure

1380 kPa (200 psi)

Process pressure

10,342 kPa (1500 psig) maximum [higher pressure available using additional sampling system components]

1.4.6 Temperature

Operating -20° to +65°C (-4° to 149°F)

Storage -20° to +70°C (-4° to 158°F)

Optional heater/thermostat setpoint

 $20^{\circ}\pm5^{\circ}C$ ($68^{\circ}\pm9^{\circ}F$) for U.S. and Canada $10^{\circ}\pm5^{\circ}C$ ($50^{\circ}\pm9^{\circ}F$) for EU and elsewhere

1.4.7 Flow rate

Sample cell flowrate 10 to 60 SLH (0.4 to 2 SCFH); 30 SLH (1 SCFH) nominal

Coalescer by-pass fast loop

5 to 10X of flowrate through sample cell

1.4.8 Display

Backlit LCD, three programmable simultaneous parameters, alphanumeric status and diagnostic display, LEDs for power, laser temperature stability, keypad lockout

1.4.9 Inputs/outputs

Analog outputs

Three programmable 0/4-20 mA, 500 Ω maximum load

Analog input

Loop-powered 4-20 mA input for remote pressure transmitter (**Aurora H2O** supplies 24 VDC)

Digital interface

Two programmable digital communications ports

RS-232 and RS-485 with multi-drop capability and assignable address, modbus RTU protocol

1.4.10 Enclosure

Ingress protection

IP-66

1.4.11 Laser certification

Class 1 product, conforms to IEC 60825-1 edition 2.0, Safety of laser products

WARNING!

Use of controls or adjustments or the performance of procedures other than those specified herein may result in hazardous laser exposure.

1.4.12 User interface

Programmable "through-the-glass" via magnetic stylus

1.4.13 Weight and dimensions

Net Weight

45 kg (100 lb)

Overall dimensions

34"H x 18"W x 14"D (87 cm x 46 cm x 36 cm) [see drawings]

1.4.14 Hazardous area certification

USA/Canada

Explosion-proof for class I, division 1, groups B, C&D

Dust-Ignitionproof for class II/III, division 1, groups E, F&G (Canada only)

EU and elsewhere

ATEX and IECEx: Ex d e IIB+H2 T6 Gb IP66; Tamb = -20°C to +65°C. Flameproof with increased safety compartment

Evaluated against standards EN 60079-0:2012, EN 60079-1:2007, EN 60079-7:2007, IEC 60079-0:2011, IEC 60079-1:2007, IEC 60079-7:2006.

1.4.15 European certification

CE

Complies with EMC directive 2014/30/EU low voltage directive 2014/35/EU and pressure directive 2014/68/EU for DN<25

1.4.16 Software

Displays all key parameters. provides time-base graphing, data logging ability, export data as ASCII text. Software has lockout/passcode.

1.4.17 Sampling system

Integrated sampling system to filter out physical contaminants, remove glycol carry over, control temperature condition, regulate pressure and flow rate. Optional thermostatically controlled heater.

1.4.18 Wetted components

316/316L stainless steel for tubing and fittings. Other wetted components such as the optical window and mirror are proprietary materials and are compatible with natural gas and typical contaminants found in natural gas. Other sample system components wetted parts include PTFE, PFA, Inconel, Hastelloy, PVDF, glass, Viton. [no content intended for this page]

Chapter 2. Installation

2.1 Introduction

The **Aurora H2O** analyzer provides direct indication of moisture concentration in natural gas. Temperature and pressure sensors are used to provide high precision enhancement. It may be installed in a wide variety of environmental conditions, and meets the requirements for operation in hazardous areas.

Be sure that the ambient temperature is at least 10°C higher than the maximum dew/frost point temperature you expect to measure. This will ensure that you will not have liquid condensation in the sample transport line or the **Aurora H2O** sampling system components. Heat tracing the sample line will aid in elevating the sample temperature above the dew point. An optional heater installed within the enclosure is also available.

2.2 Bill of materials

The following items should have been received with your shipment:

- Aurora H2O Unit
- Aurora H2O User's manual on CD ROM
- AuroraView software on CD ROM
- Aurora H2O calibration data sheet
- Maintenance/accessories kit
- Optional: Pipeline insertion filter/regulator assembly

2.3 Unpacking

The **Aurora H2O** is shipped in a packing box with a plywood base (see *Figure 7* below), and the **Aurora H2O** analyzer is secured to the plywood base with mounting bolts. Transport the shipping package with the plywood base on the bottom, and according to the warning labels on the exterior packaging. Open the packing box from the top, and remove the foam packing material. Collect any separate components such as the **AuroraView** CD, the user manual CD, and other items contained in the shipment.

Remove the mounting studs at the bottom of the enclosure. Using two people, lift the **Aurora H2O** from the bottom of the enclosure and from the top of the enclosure where the analyzer electronics is located. A typical **Aurora H2O** weighs approximately 100 pounds (45 kg). Use a proper lifting technique to avoid injury.

Check all the received components and record the model numbers and serial numbers for your records. If anything is missing, contact Panametrics immediately.

Figure 7: Unpacking the Aurora H2O

2.4 Choosing a site for installation

You should have discussed environmental and installation factors with a Panametrics sales, application or service engineer by the time you receive the analyzer.

Before installing the analyzer, read the guidelines below on installation recommendations:

- 1. Choose an installation site for the **Aurora H2O** analyzer as close to the actual sample point (sample take-off point) as possible, to minimize transport time to the analyzer.
- 2. Avoid unnecessarily long lengths of sample transport tubing to minimize transport time to the analyzer.
- 3. Avoid dead-legs in the sample transport tubing to minimize the possibility of liquid build-up.
- 4. Use stainless steel tubing. Avoid using copper tubing, as the water molecule has greater absorption capabilities for copper compared to stainless steel. Avoid rubber tubing at all costs, as water molecules interact with the

rubber, and ambient moisture can permeate through the tube wall into the sample gas.

- 5. Mount the **Aurora H2O** analyzer at grade, or at a location that is easily accessible for maintenance (on a platform or other structure).
- 6. Be sure that the ambient temperature is at least 10°C higher than the maximum dew/frost point temperature you expect to measure. This will ensure that you will not have liquid condensation in the sample transport line nor in the **Aurora H2O**. Heat tracing the sample line will aid in elevating the sample temperature above the dew point. An optional heater installed within the enclosure is also available.

A typical **Aurora H2O** system for monitoring moisture off a natural gas pipeline is shown in *Figure 8 below*.

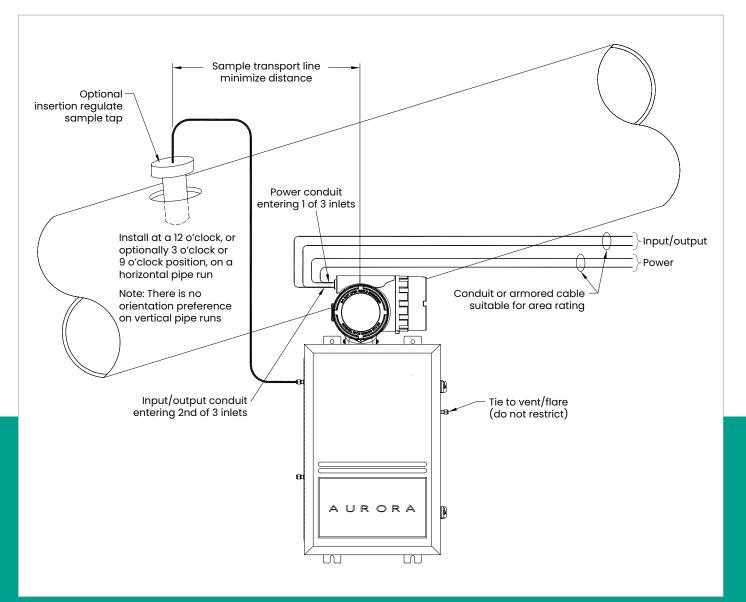


Figure 8: Aurora H2O analyzer monitoring moisture off a natural gas pipeline

2.5 Low voltage directive

To comply with the low voltage directive, you must install a switch or circuit breaker on the input power line. For greatest safety, locate the circuit breaker or power switch near the electronics console.

IMPORTANT

Installation must be done in accordance with the national electrical code, the Canadian electric code, and/or any other applicable local codes.

2.6 Mounting

Use the four mounting tabs to mount the **Aurora H2O** system assembly in the desired location (see *Figure 31* on page 20).

IMPORTANT

The Aurora H2O should only be mounted vertically.

2.7 Optional insertion probe/regulator

2.7.1 Description

For natural gas applications that may have entrained particulate and liquid contaminants (especially TEG carry-over from TEG dryers), Panametrics recommends the use of a *insertion probe/regulator* (see *Figure 9* below) to serve as the first part of particulate and condensate filtration where the gas is sampled off the pipe. The device combines the features of a sample tap, a membrane filter and an integral pressure regulator (0-500psig outlet), adjustable at the sample take-off point. The sample tap housing includes a foot-valve so that, once installed, the assembly can be removed from a line under pressure for membrane filter replacement as needed.

Figure 9: Insertion probe/regulator

NOTE: A 29/32" (0.907 inch, 23.1 mm) minimum bore-through clearance is needed on the customer nozzle for insertion of a %" NPT insertion membrane liquid separator/pressure regulator.

2.7.2 Installation

Note that the *optional insertion probe/regulator* can be installed only on **unpressurized** lines. There is no hot-tap installation for this device.

This procedure is broken down into two steps:

- Installing the housing
- Installing the insertion probe/regulator assembly

2.7.2a Installing the housing

The housing, as shown in *Figure 10* below, is supplied with a *locking mechanism* to ensure that housing can only be removed intentionally.

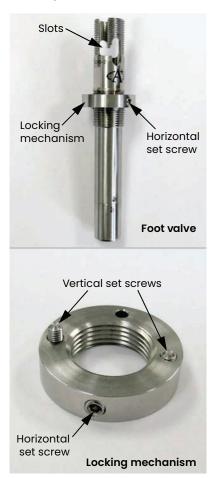


Figure 10: Installing the housing and locking mechanism

 Turn the locking mechanism counter-clockwise until it is at its extreme upper position. Apply thread sealant to the threaded area below vertical slots in the threads (see *Figure 11* below). Do not allow the thread sealant to enter the slot, as it may interfere with the mechanism.

Figure 11: Applying thread sealant

2. Confirm that the pipeline has been unpressurized. Refer to *Figure 12* below and insert the housing into the pipeline through a %" NPTF thread-o-let (The minimum ID of the thread-o-let is 0.91").

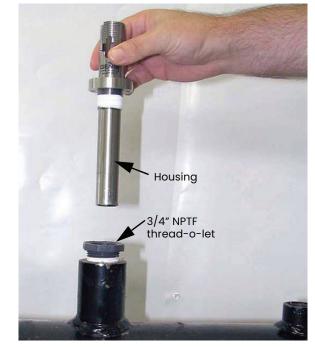


Figure 12: Inserting housing into pipeline

 Using a wrench on the wrench flats, turn the housing until it is secure and sealed (see *Figure 13* below). This will require between three and five turns. Do not overtighten! The housing may be damaged if it is over-tightened, causing the housing to deform.

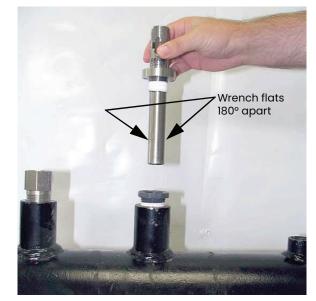


Figure 13: Tightening the housing

- 4. Turn the locking mechanism clockwise until it first touches the top of the thread-o-let.
- Turn the locking mechanism counterclockwise until the Allen screw is aligned with the thread slot (see *Figure 14* below). Using a 1/8" Allen wrench, tighten the Allen screw until its tip is tight against the slot.
 Do not overtighten the Allen screw as this will cause the housing wall to be indented.

Figure 14: Aligning and tightening the Allen screw

6. Using a 3/32" Allen wrench, tighten the Allen screws on the locking mechanism's surface until their tips are firmly set into the thread-o-let's upper surface (see *Figure 15* below).

Figure 15: Tightening the Allen screws

The housing is now installed. The locking mechanism should prevent the housing from becoming unintentionally unscrewed from the thread-o-let. The pipeline my now be pressurized.

2.7.2b Installing the insertion membrane liquid separator/pressure regulator assembly

1. Confirm that the Allen cap screw head's hex cavity is clean and free from foreign material. Confirm that the Allen cap screw that holds the membrane ferrule is torque-wrench tight (see *Figure 16* below). The torque value should be 10 inch-lbs. If the Allen cap screw is only hand-tight, the screw may protrude excessively, which could result in foot valve actuation when the probe is installed into the housing.

Figure 16: Checking/tightening the Allen cap screw

2. Rotate the pressure adjustment screw on the pressure regulator fully counterclockwise until it rotates freely. Close the isolation ball valve (see *Figure 17* below).

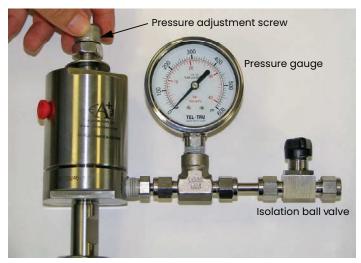


Figure 17: Rotating the pressure adjustment screw

- Refer to Figure 18 below and position the membrane end of the probe above the installed housing. Slowly lower the probe into the housing. Avoid membrane contact with the upper section of the housing. Do not apply downward force. The probe should slide easily into the housing. Lower the probe only enough to thread the insertion nut one complete turn of thread engagement.
- 4. Thread the insertion nut down by hand, lowering the probe until the insertion washer pins slide to the bottom of the first vertical slot (see *Figure 19* below).

NOTE: The threaded nut on the housing ensures that if all other safety procedures are disregarded, it is mechanically impossible to remove the probe.

5. Rotate the probe counterclockwise until the pins are to the far right in the horizontal slot. At this point, the probe is sealed against the housing interior wall. The pins will be in the middle of the second vertical slot (see *Figure 20* below).

 Loosen the insertion nut until it is above the top of the second vertical slot (see *Figure 21* below). The probe should not rise to the top of the second vertical slot. If the probe rises in the slot, the foot valve o-ring may have been damaged or attacked by the process.

NOTE: The threaded nut on the housing ensures that if all other safety procedures are disregarded, it is mechanically impossible to remove the probe. Perform the next step regardless of the status of the foot valve o-ring.

7. Tighten the insertion nut by hand until it is against the insertion washer again. Using a wrench, tighten the insertion nut against the insertion washer so that the pins are at the bottom the second vertical slot (see *Figure 22* below). At this point the foot valve opens and the insertion process is complete.

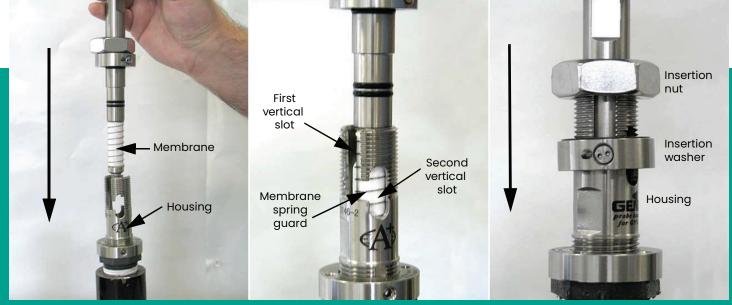


Figure 18: Installing the probe

Figure 19: Threading the insertion nut

Figure 20: Rotating the probe

Figure 21: Loosening the

insertion nut

Figure 22: Tightening the insertion nut

2.7.3 Setting the pressure

NOTE: Perform these steps only after the entire system has been plumbed, including the **Aurora H2O**.

- 1. Ensure the inlet sample gas isolation valve on the **Aurora H2O** sample system is closed. Open the isolation ball valve at the *optional pipeline insertion membrane liquid separator/pressure regulator*.
- 2. Turn the pressure adjustment screw clockwise to increase the pressure (see *Figure 23* below). The optional pipeline insertion membrane liquid separator/pressure regulator is the *first stage* pressure reduction of the system when used. Depending upon your source pressure, you should step down the pressure to a value in the range listed in *Table 2* below.
- 3. Tighten the lock nut down to the top of the pressure regulator to avoid future possible changes in pressure regulator setting, once the pressure is set.

Table 2: Pressure settings		
Source pressure	Outlet pressure setting	
750 psig < source < 1500 psig	400-500 psig	
500 psig < source < 750 psig	300 psig	
< 500 psig	50% of the average source pressure	

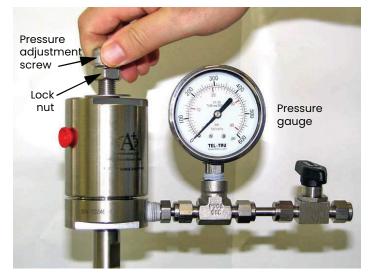


Figure 23: Turning the pressure adjustment screw

2.8 Making electrical connections

Refer to Figure 32 on page 21 for wiring connections.

 Aurora H2O has three ¾" NPT conduit inlet ports for power and I/O (see Figure 24 below). These will normally be shipped plugged from the factory. Follow the applicable wiring code and requirements for wiring the unit.

Figure 24: Conduit inlet ports

NOTE: Use one conduit inlet for power. Use the two other conduit inlets for input/output as needed. All unused conduit inlet ports should be sealed with suitable blanking elements.

 Select one conduit for inlet power to the Aurora H2O based on your configuration. The Aurora H2O comes with a universal power supply, or optionally, as a 24VDC powered unit. Remove the wiring cover to view the wiring terminal block (see Figure 25 below).

Figure 25: Wiring terminal blocks

NOTE: Supply connection wiring shall be rated at least 10°C above the rate maximum service temperature of 85°C, be stripped back 5/16 in. (8 mm) and torqued to a minimum of 4.4 in. lb. (0.5 Nm).

 Run the AC power connections to the power terminal block shown in *Figure 26* below. It is recommended to use 12-18 AWG (3.3 - 0.82 mm²) power wiring.

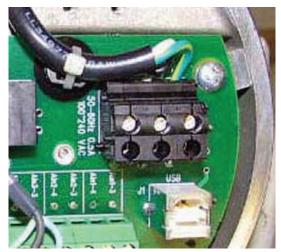


Figure 26: Power terminal block

- 4. Use wiring conduit runs, separate from the Aurora H2O main power, for all I/O (input/output) leads. Wire up to three 4-20mA outputs to the terminals labeled A, B, and C. The three analog outputs A, B and C (0-20mA or 4-20mA) are internally powered by the Aurora H2O. Use shielded 18-22 AWG (0.82-0.33 mm²) twisted pairwire, and ground the shield at one end only. Wire up digital communications to port 1 and/or port 2 as labeled.
- Either digital port may be configured for RS-232 or RS-485. Port 1 is designated as "service." For operation on RS-485, 2 wire, half-duplex bus, attach the RS-485(+) to (+), and modbus-IDA specifications, a third, common conductor must also interconnect all the devices of the bus. Attach the common conductor to RTN.

NOTE: For an RS-485 Multi-drop network, a terminating resistor must be installed across the **Aurora H2O** RS-485 terminals, or an internal terminating resistor can be applied. See below.

- When using the **Aurora H2O** in RS-485 mode, and to prevent signal reflections on the high-speed RS-485 connections, it is recommended that the far end of the RS-485 lines be terminated properly. The termination can be accomplished in one of two ways:
 - Connect 120Ω, ¼ W leaded resistors across the
 + and terminals of ports 1 and 2 (both ports or whichever one will be in use)
 - Using long-nose pliers, move jumpers J15 and J16 from pins 2 and 3 (default setting from factory) to pins 1 and 2 (see Figure 27 on page 28). J16 is the termination for port 1 and J15 is the termination for port 2. It is also recommended that basic ESD precautions such as grounded wrist straps be used for this procedure.

Multi-drop RS-485:

For multiple **Aurora H2O** units connected in daisy-chain fashion to the RS485 interface, it is important that the farthest unit away from the transmitting device be the only unit incorporating any termination (see *Figure 27* below). All other units must have jumpers J15 and J16 in positions 2 and 3 (default setting from the factory). For more details on RS-485 wiring or operation, refer to TIA/EIA-485-A specification.

NOTE: The internal terminations MUST be in the default (unterminated) position for operation in RS-232 mode.

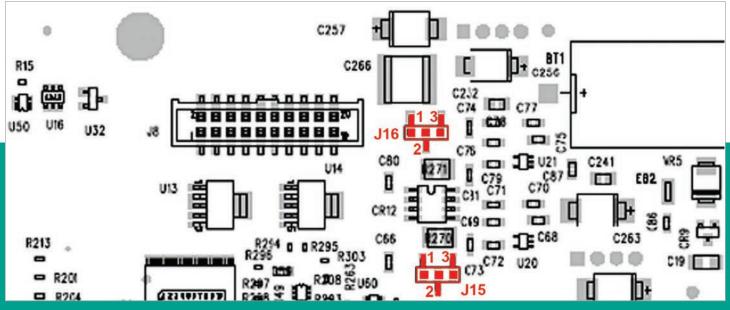


Figure 27: RS-485 mode termination - install jumpers at J15 and J16, pins 1 and 2

- For operation on RS-232, connect RS-232(TXD) to (+), RS-232(RXD) to GND) to RTN (see *Figure 28* below).
- 6. For connection to a PC to interface with **AuroraView** software, you may use the supplied 704-688 cable (RS-232 w/ SUB-D-9 connector to tinned leads). Wire the cable as follows:

Color Code		Aurora H2O terminal
White	Тх	+
Red	Rc	
Green	Ground	RTN

The as-shipped default configuration is as follows:

BAUD rate:	115,200
Parity:	Even
Network ID:	1 for port 1, 2 for port 2

7. Use a separate wiring conduit run for any 4-20mA pressure transmitter input. This input is used when a live input pressure reading for the main process pressure is desired, to determine an equivalent dew point by the Aurora H2O analyzer. Wire the 4-20mA pressure transmitter to the pressure transmitter terminal block (see Figure 29 below). The Aurora H2O supplies 24VDC for use with a loop-powered, 2-wire pressure transmitter.

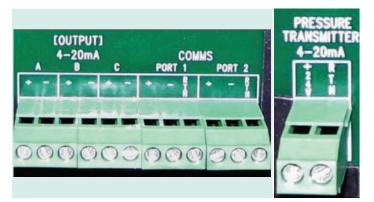


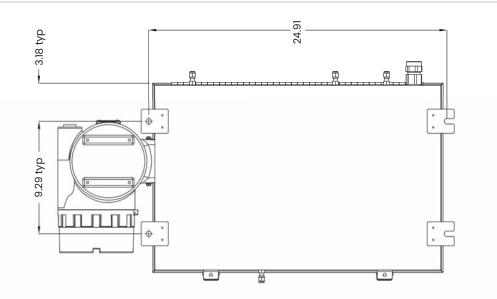
Figure 28: (Left)Input/output connections Figure 29: (Right) Pressure transmitter connections

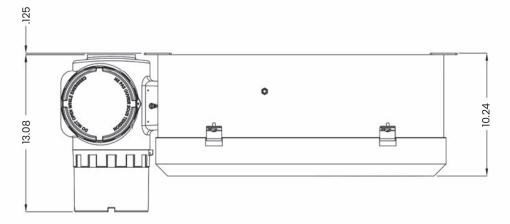
IMPORTANT

Use of an external pressure transmitter is not covered by the **Aurora H2O** hazardous area certifications.

The external pressure transmitter should be suitably rated for the area classification. Its associated wiring should be done in accordance with local codes and regulations, and suitably rated for the area classification.

- If the Aurora H2O has been supplied with an optional electrical heater, there are two possible configurations: USA/CAN or EU. Connect the AC power using a separate conduit from the power for the Aurora H2O analyzer. The heater is equipped with a thermostat preset to 25°C (77°F) nominal. Use 12-18 AWG (3.3 0.82 mm²) wires. The heater terminals are located within a junction box (item 15 in *Figure 2 on page 3* or *Figure 3 on page 4*).
- Lastly, the Aurora H2O analyzer requires a connection to ground from the electronics explosion-proof/flameproof enclosure. As shown in *Figure 30* below, there are two external ground connections available for the user (on the left and right hand sides of the enclosure). Wire this connection to earth ground, local to the Aurora H2O analyzer installation site.




Figure 30: Earth ground connection

2.9 Specific conditions of use

Before operating your **Aurora** system, be sure the following conditions are met:

- In the event of repair or replacement of any components, the manufacturer, Panametrics infrastructure sensing, shall be contacted for information on the controlled materials and dimensions of the flameproof characteristics of the Aurora H2O moisture analyzer.
- The laser head assembly of the **Aurora H2O** moisture analyzer shall be inside a tool secured enclosure with IP20 or better to ensure the factory installed laser head assembly bolts are inaccessible from the outside.
- Consult the manufacturer for genuine replacement flange fasteners. 5/16 inch-24 x 1-1/4 inch 18-8 stainless steel socket head cap bolts or better with a minimum tensile strength of 70,000 psi are acceptable alternatives.
- To reduce the potential of an electrostatic charging hazard, do not rub painted aluminum parts with a dry cloth.

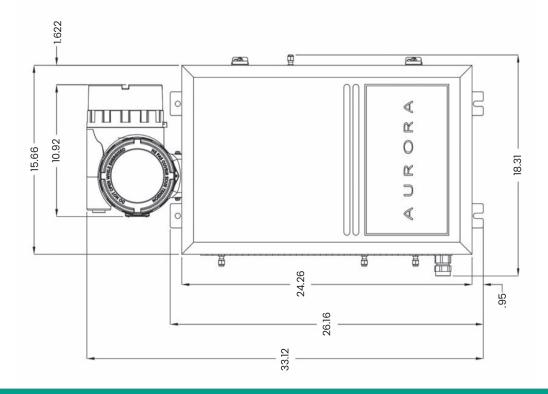


Figure 31: Aurora H2O outline and mounting (ref. dwg #712-1456)

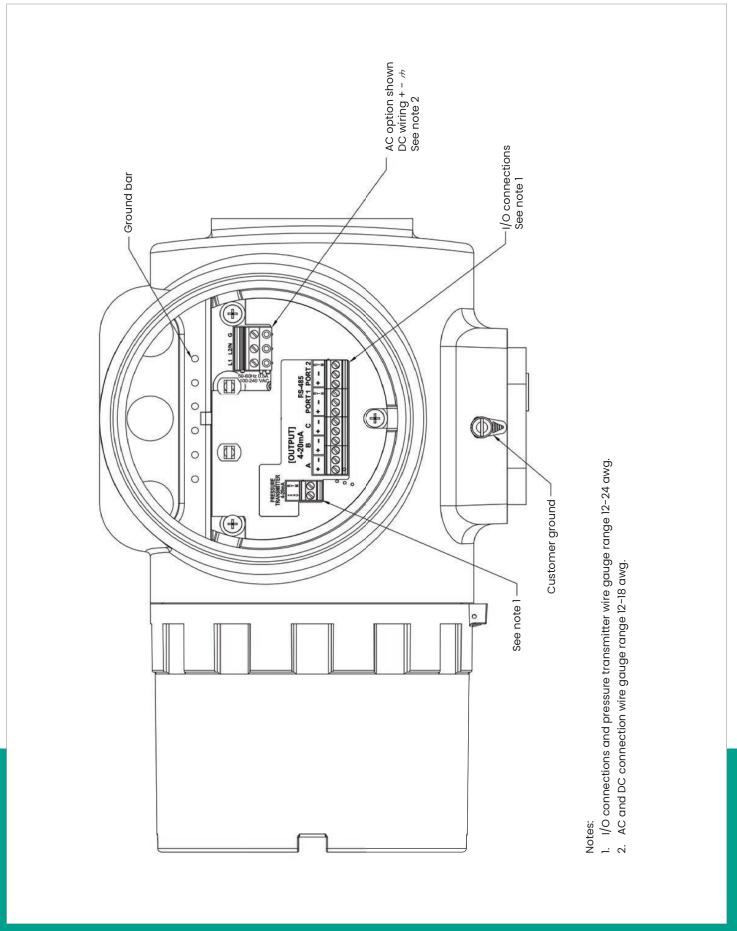


Figure 32: Aurora H2O electronic assembly wiring diagram (ref. dwg #702-8976)

[no content intended for this page]

Chapter 3. Operation and general programming

3.1 Using the Aurora H2O

Follow the information in this chapter to operate the **Aurora H2O** system.

Class 1 laser product

WARNING!

Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous laser exposure.

3.2 Sample system

See the instructions below and *Figure 33 on page 24* to operate the **Aurora H2O** sample system.

3.2.1 Aurora H2O startup

- 1. Supply gas inlet pressure should be <400 psig (2760 kPa).
- 2. Confirm that there are no flow restrictions downstream of the analyzer sample outlet.
 - a. Maximum outlet back pressure: 10 psig
- 3. Start with all valves in fully closed position and the pressure regulator turned fully counter-clockwise.
- 4. Turn the sample gas selector valve [1] with the handle indicator pointing fully to the right.
- 5. Open the bypass gas metering valve [2] 1/4 turn.
- 6. Fully open the sample gas metering valve [3].
- 7. Slowly open the supply gas isolation valve [4] 1/4 turn.
- 8. Slowly turn the supply gas pressure regulator [6] clockwise until the sample gas flow meter [7] indicates mid-scale.
 - a. If the pressure is increased to rapidly, it will activate the liquid-block feature of the membrane filter [8] shutting off gas flow.
 - b. If this occurs, fully close the supply gas isolation valve [4].
 - c. Wait 30 seconds, and then go back to step 7.
 (A pop sound can be heard when the liquid-block re-opens to allow gas flow)
- 9. Slowly adjust the bypass gas needle valve [2] until the desired flow rate is reached (requires optional flow meter for precise metering).
- 10. Fully open the supply gas isolation needle valve [4].

3.2.2 Aurora H2O shut down

- 1. Fully close the supply gas isolation valve [4].
- 2. Turn the supply gas pressure regulator [6] fully counter-clockwise.
- 3. Fully close the bypass and sample gas metering valves [2 and 3].

3.2.3 Aurora H2O purge gas connection

- 1. Start with all valves in closed position and the pressure regulator turned fully counter-clockwise.
- Confirm that there are no flow restrictions downstream of the analyzer sample outlet.
 a. Maximum outlet back pressure: 10 psig
- 3. Turn the sample gas selector valve [1] with the handle indicator pointing fully to the left.
- 4. Connect the regulated and filtered gas supply.
 - a. Regulated pressure range: 0-10 psig.
 - b. Outlet filter size: 7 micron
 - c. Initial pressure setting: 0 psig (minimum)
- 5. Fully open the sample gas metering valve [3].
- 6. Increase the regulated pressure until the sample gas flow meter [7] indicates mid-scale.

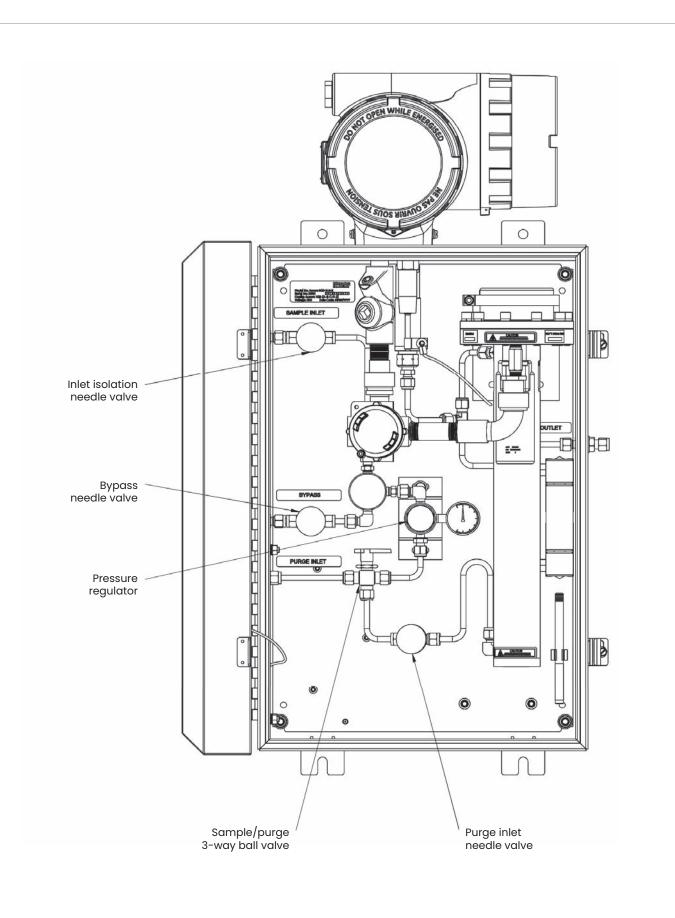


Figure 33: Aurora H2O sample system (ref. dwg #902-004)

3.3 Keypad features

Figure 34

The **Aurora H2O** has seven keys: a menu key, four arrow keys, a cancel \bigotimes key, and an enter \checkmark key.

- Use the **menu** key to open the main menu on the display.
- Use the **arrow** keys to navigate among menu choices and to increment/decrement numeric entries.
- Use the cancel X key to cancel a numeric entry change, or exit a menu.
- Use the enter \checkmark key to accept a numeric entry or select a menu option.

3.3.1 Indicator lights

If the **fault indicator** is lit, an instrument fault is detected. A message will be displayed in the main display, top/right.

If the **information indicator** is lit, the instrument is still operating, but a message will appear in the main display top/right, with information about the instrument.

The **keypad lock indicator** will be lit if either: A) the keypad lock-out switch, internal to the instrument, has been engaged, or B) the instrument keypad has not been used for a period of several minutes, engaging a software feature to lock-out inadvertent key usage. Type (B) keypad lock-out is overcome by pressing *cancel*, *enter*, *cancel* in sequence.

If the **laser indicator** is lit, the laser is powered and operating normally. This indicator will be off if there is a laser-specific fault. This indicator will also be off for a brief period when the instrument is first powered. After initial power-up, this indicator may blink several times as the laser temperature is stabilized. The laser indicator will be lit constantly in normal operation. The **power indicator** is normally lit when the instrument is powered on.

3.3.2 The magnetic stylus

Each of the keys can be selected using a hand-held magnet called a *magnetic stylus* (see *Figure 35* below), which is included with the meter. By touching the clear window at a key location, that key will be selected and will flash a red light to verify the contact.

Figure 35: Magnetic stylus

3.3.3 The default display

Figure 36 below shows the default display of the **Aurora H2O** window.

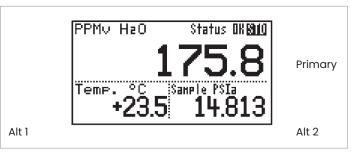


Figure 36: Default display

3.3.4 Unlocking the keypad

After power-on, the **Aurora H2O** keypad is locked as indicated by the symbol \bigoplus , lit up with a red backlight. It is necessary to enter the keypad unlock sequence to make any changes to the **Aurora H2O**.

Similar to a mobile phone, the **Aurora H2O** will prompt the operator to unlock if any key is pressed. A passcode is required to use certain factory service features only.

To unlock the keypad, press cancel \clubsuit , enter \checkmark , cancel \bigstar in sequence.

3.3.5 Keypad lock-out switch

Figure 37: Keypad lock-out switch location

NOTE: If the *keypad lock-out switch* is in the "down" position, the keypad is locked out and the *red led* on the *keypad lock indicator* is on all the time.

WARNING!

Do not open or remove the cover with the power on, unless the area is non-hazardous.

3.3.6 Accessing the menus

After successfully unlocking the keypad, press the (==) menu key. The **Aurora H2O** will display the *main menu* (see *Figure 38* below). Use the arrow keys to highlight the menu item desired. Refer to menu map, *Figure 45 on page 50*.

Press enter \checkmark to select the highlighted item. Many menu items will display another menu. Use cancel \checkmark to return to the previous menu page. Pressing cancel \checkmark from the main menu will return the screen to the measurement display.

NOTE: Menu items displayed with an ellipsis (shown as a series of three dots after the menu item) will bring up more choices, while those without take immediate action.

Main Menu Display... Service... Outputs... About... Alarm... LOCK Settings...

Figure 38: Main menu

3.3.7 Entering numeric values

Since the **Aurora H2O** has no numeric keypad, numeric values are entered using a *"combination lock"* style of entry:

Use the left \blacktriangleleft and right \blacktriangleright arrow keys to select the digit to change. The digit selected will be indicated with a \blacktriangle .

Use the up \blacktriangle and down \blacktriangledown arrow keys to increment or decrement the digit.

NOTE: If incrementing or decrementing a digit would cause the numeric value to exceed its allowable range (maximum/minimum value), the digit will not change.

Press enter \checkmark to save the new value and return (see Figure 39 below), or cancel \updownarrow to return, leaving the original value intact.

Set Output A Zero
Set Output A Zero
00000.00 PPM∨ H₂O
MITTE 0.00 √=Save X =Cancel
√=Save x =Cancel

Figure 39: Numeric entry

3.3.8 Starting up

After proper installation, the **Aurora H2O** transmitter can be set up to accommodate the user's requirements. Typically, the user may need to configure the analog outputs, trim the analog outputs, and program the digital outputs. Refer to the menu map, *Figure 45 on page 50*, and complete the following steps. Upon startup, the **Aurora H2O** proceeds through several displays until a screen similar to the following appears:

After startup, the screen will need to be unlocked. To unlock the screen, select cancel \mathbf{x} , enter \mathbf{y} , cancel \mathbf{x}

NOTE: In most instances; use the enter key to save an entry and/or move ahead to the following screen; use the cancel key to reject an entry and/or return to the previous screen.

3.4 Setting up the display

Main Menu	6-3777 N.S.
Display…)	Service
Outputs	About
Alarm…	LOCK
Settin s s…	

When the screen is unlocked, touch the *menu* key and the *main menu* appears with several options. To set up the display, select *display*... and press *enter*. The following screen appears:

Select Alt 1 Unit:
Temp. °C
Temp. °F
Temp. K
Dew Pt. °C
Dew Pt. °F

Use the arrow keys to highlight the desired unit and press *enter*. The screen returns to the *display menu*. Use the same procedure to change other units.

3.4.3 Setting decimal places

Display Menu Set Decimal for:	
(Alti Al	t2
x =Cancel	

To set the decimal places for unit values, from the *display menu* use the arrow keys to highlight *decimal* and press *enter*. Then select the type of display and press *enter*.

The decimal places setting determines the number of digits displayed for the value to the *right* of the decimal symbol ("."), if possible.

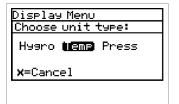
Use the arrow keys to change the number of decimal places and press *enter*, or press *cancel* if no changes are necessary. The screen returns to the *display menu*.

3.4.1 Selecting primary units

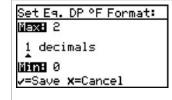
Display Me	nu
(Primary)	Data/Scan
Alt 1	Adjust
A1t 2	Reverse
Decimal	

To select units for the primary display, select *primary* and press *enter*. The following screen appears:

PPMv HaO	Dew Pt	:. °C
_bs/MMSCF	Dew Pt	• °F
a∕smª HaO	Eq. DF	, °C
ng∕sm³ H₂O	Eq. DF	°F
Pw, kPa		


Use the arrow keys to highlight the desired units and press *enter*. The screen returns to the display menu.

3.4.2 Selecting alt 1 and alt 2 units


Use the arrow keys to highlight the desired unit and press enter. The screen returns to the display menu. Use the same procedure to change other units.

Primary	Data/Scan
(A)[[]	Adjust
A1t 2	Reverse
Decimal	

To set the units for *alt 1* and/or *alt 2*, use the arrow keys to highlight the one to be set, and press *enter*. The following screen appears:

Use the arrow keys to highlight the desired unit type (hygro, temperature or pressure) and press enter. If temp is selected, the following screen appears.

3.4.4 Data/scan

PPMu Hao:14339.0 +5.5e+00

-1.4e+00

Primary	(Data/Scan
Alt 1	Adjust
Alt 2	Reverse

Status OK

To toggle the display between showing the numeric values (data), and a graphic plot of the 2f waveform (scan), from the display menu use the arrow keys to highlight data/scan and press enter. A screen similar to the following appears.


NOTE: The scan can be used for diagnostic purposes when a PC with AuroraView is not readily available.

3.4.5 Adjust

NOTE: The display brightness is not adjustable in the current **Aurora** design; the brightness adjustment is not available.

Primary	Data/Scan
Alt 1	(Adjust)
A1t 2	Reverse

To modify the display contrast and brightness, from the *display menu* use the arrow keys to highlight *adjust* and press *enter*. The following screen appears.

Use the *up/down* arrow keys to increase/decrease display brightness. Use the *right/left* arrow keys to increase/decrease display contrast. Press *enter* to save the changes, or press *cancel* to return to the previous setup. The screen returns to the *display menu*.

3.4.6 Reverse

Display Me	enu
Primary	Data/Scan
Alt 1	Adjust
Alt 2	(Revense)
Decimal	

To reverse the text and background shades, from the *display menu* use the arrow keys to highlight *reverse* and press *enter*. The following screen appears.

Display Me	enu
Primary	Data/Scan
Alt 1	Adjust
A1t 2	(Reverse)
Decimal	

To return to the previous shade setup, select *reverse* and press *enter*. The previous screen appears.

3.5 Setting up the outputs

3.5.1 Selecting an output for setup

Display	Service
Outputs	About
Alarm	LOCK
Settings…	

To set up outputs, from the *main menu* choose *outputs...* and press *enter*. The following screen appears.

Output Menu	[Out A]
(Select)	Lower
Units	Test
Туре	Trim
Upper	

From the *output menu* choose *select* and press *enter*. The following screen appears.

Output Menu [Out A] Select Output: () B C X=Cancel

Use the arrow keys to select the output (A, B or C) to be set up, and press *enter*.

3.5.3 Selecting an output type

<u>Output Menu</u>	[Out A]
Select	Lower
Units	Test
(Type)	Trim
Upper	

To change the output type, from the *output menu* select *type* and press *enter*. A screen similar to the following appears:

(1992) 0-20ma alm
x =Cancel

Use the arrow keys to select a new output type. Press *enter* to save (or *cancel* to keep the previous value), and return to the *output menu*.

NOTE: If the *ALM* option is selected in the above menu, the analog output will function as an alarm indicator. In this mode, the analog output will remain at 0 mA during normal operating conditions, but the analog output will be driven to 24 mA whenever there is an alarm condition.

3.5.4 Changing the upper output span

Output Menu	[Out A]
Select	Lower
Units	Test
Туре	Trim
(Upper)	

To adjust the upper output span, from the *output menu* select *upper* and press *enter*. A screen similar to the following appears.

Set Output A Span Maxa 50000.00 00100.00 PPMv H≥O Mana 0.00 v=Save x=Cancel

Use the left and right arrow keys to select each digit to be changed and the up and down arrow keys to increase or decrease its value. Press *enter* to save (or *cancel* to keep the previous value), and return to *output menu*.

3.5.2 Selecting output units

Output Menu [Out A] Choose unit type:
Choose unit type:
(Hysno) Temp Press
x =Cancel

From the output menu, select units and press enter. Use the arrow keys to select the unit type and press enter. A screen similar to the following appears:

Select Out	
PPMv HaO	Dew Pt. °C
Lbs/MMSCF	Dew Pt. °F
ma∕mª HsO	Eq. DP °C
Pw, kPa	Eq. DP °F

Use the arrow keys to select a new unit. Press enter to save (or cancel to keep the previous value), and return to the output menu.

3.5.5 Changing the lower output span

Output Me	nu [OutA]
Select	(Lower)
Units	Test
Туре	Trim
Upper	

ax B	5000	t A Zei 0.00	0
		PPMv	
in:	Î0.0	0	
=Sav	e x=	- Cance:	1

To adjust the lower output span, from the *output menu* select *lower* and press *enter*. A screen similar to the following appears.

Use the left and right arrow keys to select each digit to be changed and the up and down arrow keys to increase or decrease its value. Press *enter* to save (or *cancel* to keep the previous value), and return to *output menu*.

3.5.6 NAMUR response

The **Aurora H2O** can report measurement failure information via the analog outputs. The signal presentation of failure information is consistent with by the recommendations established by the "User Association of Automation Technology in Process Industries" (NAMUR) published in NE43, version 03.03.2003. When configured for 4-20mA operation, faults and errors are indicated by specific output levels shown in *Figure 40* below:

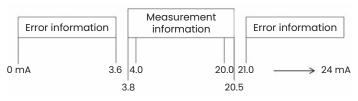


Figure 40: NAMUR output value ranges

In normal operation, a valid measurement is indicated with a signal between 3.8 and 20.5 mA. The lower (zero) and Upper (span) settings determine the measurement value assigned to 4.0 and 20.0 mA, respectively.

For the measurement assigned to an output, the **Aurora H2O** continuously checks if an error has occurred. If an error has occurred, the output will be driven to a current which is within the error information bands displayed above. The **Aurora H2O** can signal 3.5 mA ('NAMUR low') or 21.1 mA ('NAMUR High'). These values are well within the error information bands as specified by NAMUR (see *Table 3* below).

NOTE: The **Aurora H2O** will never produce a signal between 3.6-3.8 mA or between 20.5-21.0 mA, to allow for reliable discrimination between a measurement and an error.

	Table 3: Signal messages	
Error	Description	Signal
Under range	The measurement is less than the calibrated range of the analyzer	NAMUR Iow
Over range	The measurement is greater than the calibrated range of the analyzer	NAMUR high
Out of range	Calculation error or associated measurement (temp/pressure) invalid	NAMUR high
No data	Measurement value has not been calculated yet	NAMUR high
No calibration	Moisture calibration table empty/invalid	NAMUR high

3.5.6a NAMUR filtering

There may be situations where the NAMUR signaling behavior is undesirable (see *Table 4* below). For example, a process operating at or near the **Aurora H2O** calibration limits, or when connected to a SCADA or DCS system that cannot correctly distinguish between a measurement and an error signal. In these cases, the NAMUR reporting behavior can be suppressed ("inhibited"). From the output menu, select NAMUR:

<u> Jutput Me</u>	nu [Out A]
Select	Lower
Units	(NAMUR)
Туре	Test
Upper	Trim

Then select the error(s) to inhibit:

Output Menu [Out A] Inhibit NAMUR for: (2021) LoRns HiRns Lo+Hi ALL X=Cancel

Table 4: NAMUR errors		
Selection	Result	
NONE	No errors are inhibited; NAMUR signaling will occur for any error as shown in the table above.	
LoRng	Under range errors are inhibited; NAMUR signaling will NOT occur for under range error conditions. NAMUR signaling will occur for all other errors in the table above.	
HiRng	Over range errors are inhibited; NAMUR signaling will NOT occur for over range error conditions. NAMUR signaling will occur for all other errors in the table above.	
Lo+Hi	Under range AND over range errors are inhibited; NAMUR signaling will NOT occur for these error conditions. NAMUR signaling will occur for all other errors in the table above.	
ALL	ALL errors are inhibited; NAMUR signaling will NOT occur for any error in the table above.	

3.5.7 Testing the output

Output Me	nu [Out A]
Select	Lower
Units	Test
Туре	Trim
Upper	

Output A Test Value:

Max: +110.00

Min: -25.00

Save x=Cancel

+050.00 %

The test menu causes the **Aurora H2O** to generate a 0- or 4-20mA output at the percent of scale selected. For example, in 4-20 operation, 0% = 4mA, 50% = 12mA, 100% = 20mA. This allows the proper function of recording or SCADA equipment to be verified. In 0-20 operation, 0% = 0mA, 50% = 10mA, 100% = 20mA.

To test system output, from the output menu select test and press *enter*. The **Aurora H2O** will proceed to check the settings, and a screen similar to this display will appear.

Use the left and right arrow keys to select each digit to be changed, and the up and down arrow keys to increase or decrease its value. Press *enter* to save (or *cancel* to keep) the previous value, and return to the *output menu*.

Check your output wiring. If the reading on your SCADA or DCS is off slightly, then you may use the *trim* feature to trim the output zero or span.

3.5.8 Trimming the outputs

The *trim* menu enables the operator to compensate for differences in measurement of the 0/4-20 mA outputs by connected recorders or SCADA equipment. To trim the output:

Select	Lower
Units	Test
Туре	Trim
Upper	

Trim Menu [Out A]

BC

x=Cancel

Select Trim Output:

Trim Menu [Out A]

(Reset Trim)

Tr in Der 👳

X=Cancel

Select *trim* from the *output menu* and press *enter*. The following screen appears.

Use the left and right arrow

(A, B or C) and press enter.

keys to select an output

The screen returns to the

When performing a trim

unit requires you to first

operation, the **Aurora H2O**

reset the trim. To reset the

trim output, highlight reset

trim and press enter. The

following screen appears.

previous display.

NOTE: The trim applies to whichever output is chosen with the select menu item, and displayed on the menu title bar.

NOTE: Since you cannot trim 0 mA for negative offsets, trim for the lower end of the scale is at the 4 mA output level.

Enter Out A Readins:
Enter Out A Readins: Maxe 5.2000
04.0000 mA
Min: 3.0000
✓=Save x =Cancel

Trim Menu [Out A]

Enter Out A Readins:

Max: 22.2000

20.0000 mA

10.0000

-Save **x**=Cancel

Reset Trim

Tr in Der o

(Trim Span)

Use the left and right arrow keys to select each digit to be changed, and the up and down arrow keys to increase or decrease its value. Press *enter* to save (or *cancel* to keep the previous value).

The *trim menu* returns with *trim span* highlighted. To change the span value, press *enter*. A screen similar to the following appears.

This will cause the **Aurora H2O** to output 20.000 mA on the output being trimmed. The output value should then be read using the connected recorder, SCADA equipment, or DVM. Enter the value read from the connected equipment as the *span trim* value.

Use the left and right arrow keys to select each digit to be changed, and the up and down arrow keys to increase or decrease its value. Press *enter* to save (or *cancel* to keep the previous value).

Trimming is complete. Accuracy can be verified using the *test menu*, above.

Example: *Trim* is reset, then *trim zero* is selected. The SCADA input reports 3.977 mA.

The operator enters 3.977" as the zero trim value. Trim span is selected. The SCADA input reports 19.985 mA. The operator enters "19.985" as the span trim value.

Aurora H2O adjusts the output accordingly to true the output as read by the customer recorder, SCADA or DVM. Using the *test menu*, the operator verifies that a test value of 0% now reads 4.000 mA at the SCADA equipment, and a test value of 100% now reads 20.000 mA.

17	10.50	hř.	
<u>Tri</u> Res	<u>m Men</u> set Ou	<u>u [Out A]</u> ut A Trim?	
	B) NO		

Use the left or right arrow keys to highlight yes and press *enter*. This cancels any previous trim values, and returns the **Aurora H2O** to its factory adjustment. The display returns to the previous screen with *trim zero* highlighted.

Trim Menu [Out A] Reset Trim Irim Zero Trim Senn

To trim the zero value, press *enter*. A screen similar to the following appears.

This will cause the **Aurora H2O** to output 4.000 mA on the output being trimmed. The output value should then be read using the connected recorder, SCADA equipment, or DVM. enter the value read from the connected equipment as the *zero trim* value, as follows:

3.6 Setting up the alarms

NOTE: The **Aurora H2O** is **not** equipped with alarm relays. The alarm function is useful only when reading the alarm status via modbus.

3.6.1 Selecting an alarm output

Alarm Menu	[A]
Select	Upper
Status	Lower
Units	
Туре	
121 6	

To set up alarm outputs, on the *main menu* choose *alarm* and press *enter*. From the *alarm menu* choose *select* and press *enter*. A screen similar to the following appears.

Alarm Menu [A] Select Alarm:	
B C	
1777-1617-178	
x =Cancel	

Use the arrow keys to select the output (A, B or C) to be set up and press enter. The display returns to the alarm menu.

3.6.3 Selecting alarm units

Alarm Menu [A] Choose unit type:	
Hyaro Hema Press	
x =Cancel	

To select alarm units, from the *alarm menu* select *units* and press *enter*. Use the arrow keys to select the unit type and press *enter*.

Select Al	arm A Units:
PPMv HaO	Dew Pt. °C
Lbs/MMSCF	Dew Pt. °F
ma∕mª HzO	Eq. DP °C
Pw, kPa	Eq. DP °F

If hygro was selected, this display appears. Use the arrow keys to select a unit. Press *enter* to save (or *cancel* to keep the previous value), and return to the *alarm menu*.

3.6.2 Selecting alarm status

Alarm Menu	[A]
Select	Upper
Status	Lower
Units	
Туре	

To select the alarm status, from the *alarm menu* select status and press *enter*. The following screen appears:

T	emp.	A Units: °C
T	emp.	°F
	Temp.	К
De	w Pt.	°C
De	w Pt.	°F

If temperature was selected, this display appears. Use the arrow keys to select a unit. Press enter to save (or cancel to keep the previous value), and return to the alarm menu.

Alarm Menu [A]	
Set Alarm Status:	
ON ON	
x =Cancel	

Use the arrow keys to select off or on and press enter. The display returns to the alarm menu.

Alarm Menu [A] Choose pressure type:
Sample (Eine
x= Cancel

If pressure was selected, this display appears. Use the arrow keys to select a unit. Press *enter* to save (or *cancel* to keep the previous value), and return to the *alarm menu*.

3.6.4 Selecting an alarm type

Alarm Menu	[A]
Select	Upper
Status	Lower
Units	
(Type)	

Select Alarm Type: **Select A**larm Type: In Band Out Band Fault To change the alarm type, from the *alarm menu* select *type* and press *enter*. A screen similar to the following appears:

Use the arrow keys to select an alarm type. Press *enter* to save (or *cancel* to keep the previous value), and return to the *alarm menu*.

- Setpoint: alarm activates when parameter exceeds upper limit, and deactivates when parameter is less than lower limit.
- In band: alarm activates when parameter is between upper and lower limits.
- **Out band:** alarm activates when parameter is outside upper and lower limits.
- Fault: alarm activates when a system fault is detected. The alarm de-activates when the fault condition is removed. These conditions can be found in section 7.4, *Table 4 on page 31.*

3.6.5 How the alarm types work

See *Figure 41* below for descriptions of the various alarm types:

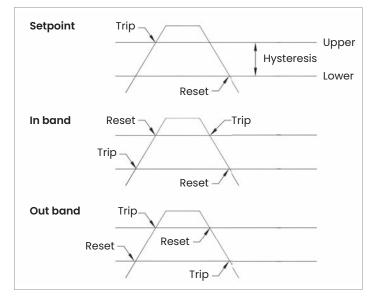
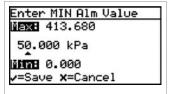


Figure 41: Example of alarm types

3.6.6 Changing the upper alarm span

Alarm Menu	[A]
Select	(Upper)
Status	Lower
Units	
Туре	


Enter MAX Alm Value MEXE 413.680 50.000 kPa MEXE 0.000 V=Save X=Cancel To adjust the upper alarm span, from the *alarm menu* select *upper* and press *enter*. A screen similar to the following appears.

Use the left and right arrow keys to select each digit to be changed and the up and down arrow keys to increase or decrease its value. Press *enter* to save (or *cancel* to keep the previous value), and return to *output menu*.

3.6.7 Changing the lower alarm span

Alarm Menu	[A]	
Select	Upper	
Status	(Lower)	
Units		
Туре		

To adjust the lower alarm span, from the *alarm menu* select *lower* and press *enter*. A screen similar to the following appears.

Use the left and right arrow keys to select each digit to be changed and the up and down arrow keys to increase or decrease its value. Press *enter* to save (or *cancel* to keep the previous value), and return to *output menu*.

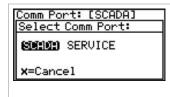
Chapter 4. Programming advanced features

4.1 Comm port settings

Main Menu	
Display…	Service
Outputs	About
Alarm	LOCK
Settings	Ľ.

To access the communication port settings, from the *main menu* select *settings* and press *enter*. The following screen appears:

Comms	Pressure
Adjust	Locale
Gas	Ether reet
Clock	


To access the communications port settings, select *comms...* and press *enter*. The following screen appears:

4.1.1 Selecting a comm port

Comm Port:	[SCADA]	
Select	Network	ID
Baud Rate		
Parity		
Protocol		

There are two physical comm ports in the Aurora H2O. Comm port 1 is aligned to SCADA in the instrument program and comm port 2 is aligned to service. This setup enables the user to have comm port 1 set up for the primary digital output (for example, RS-485 to the customer SCADA system), and *comm port* 2 to be used for service (for example, to enable a service engineer to interface with the Aurora H2O using an RS-232 cable connected to a laptop PC in the field, running AuroraView software).

To select a communication port, use the arrow keys to highlight *select* and press *enter*. The following screen appears.

Select SCADA or service and press enter. The screen returns to the comm port menu.

4.1.2 Setting the baud rate

<u>Comm Port: [SCADA]</u>	To set the baud rate, from	<u>Comm Port: [SCADA]</u>
Select Network ID	the <i>comm port menu</i>	Select Network ID
(BEUG RETE)	select <i>baud rate</i> and	Baud Rate
Parity	press <i>enter</i> . The following	Parity
Protocol	screen appears.	(Protocol
Select Baud Rate: 115.2k 19.2k 57.6k 9600 38.4k 4800	Use the arrow keys to highlight the desired baud rate and press <i>enter</i> . The screen returns to the <i>comm port menu</i> .	Comm Port: [SCADA] Select Protocol: (35533) RS-485 X=Cancel

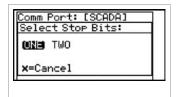
4.1.4 Selecting protocol

Comm Port:	[SCADA]	
Select Baud Rate Parity (Protocol)	Network	ID

To choose the protocol, from the comm port menu select *protocol* and press enter. The following screen appears.

Use the arrow keys to highlight the desired protocol and press enter. The screen returns to the comm port menu.

4.1.3 Setting parity


Select Network ID com Baud Rate parit	et parity, from the anm port menu select ity and press <i>enter</i> . The owing screen appears.	<u>Comm Port: [SCADA]</u> Select (Network 10) Baud Rate Parity Protocol	To set the network ID, from the <i>comm port menu</i> select <i>network ID</i> and press <i>enter</i> . The following screen appears.

Comm Port: [SCADA] Select Parity:	_
(EVEN) ODD NONE	
x =Cancel	

Use the arrow keys to highlight the desired parity and press enter.

Set Node ID:	
Max: 247	
001	
1	
✓=Save x =Cancel	

Use the left and right arrow keys to select each digit to be changed. Use the up and down arrow keys to change the value. When finished, press enter. The screen returns to the comm port menu.

After a parity selection is made, the Aurora prompts for the number of stop bits. Use the arrow keys to highlight the desired number and press enter. The screen returns to the comm port menu.

4.2 Adjust offset values

Comms	Pressure
Adjust…)	Locale
Gas	Eddeer reed
Gas Clock…	Edited to b

To adjust offset values, from the settings menu select adjust... and press enter. The following screen appears.

4.2.1 Adjusting the PPMv offset

Jser Adjustments	
PPM Level)	
Filter	
Dew Pt Calc	

To adjust the PPMv offset, select *PPM level* and press *enter*. The following screen appears.

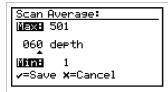
PPMv Offset:	
PPMv Offset: Maxe +25.00	
+00.00 PPM	
MINE -25.00	
v=Save X=Cancel	

Use the left and right arrow keys to select each digit to be changed. Use the up and down arrow keys to change the value. When finished, press *enter*. The screen returns to the *user adjustments menu*.

4.2.2 Adjusting the smoothing filter

User Adjustments
PPM Level
(Siliter)
Dew Pt Calc
Dewritiaic

To adjust the smoothing filter, from the user adjustments menu select filter and press enter. The following screen appears.


Smoothing Filter:	
Max: 200	
040 samples	
Min: 10	
✓=Save X=Cancel	

The smoothing filter setting is used to change the system responsiveness. It is a moving average filter to smooth the moisture readings. I sample = 1 scan. The minimum setting is 10 samples, or ~ 0.6 seconds. The maximum setting is 500 samples, or ~ 31 seconds. The default value of 40 samples, as set at the factory, is ~2.5 seconds.

Use the left and right arrow keys to select each digit to be changed. Use the up and down arrow keys to change the value. When finished, press *enter*. The screen returns to the *user adjustments menu*.

4.2.3 Adjusting the scan averaging

User Adjustments
PPM Level
Filter
(Scan Hv9)
Dew/Frost

To adjust the scan averaging, from the user adjustments menu select scan avg and press enter. The following screen appears:

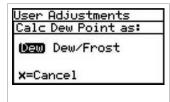
The scan average setting is used to change system noise rejection. By averaging entire scans, the signal/noise ratio (SNR) can be increased. This is particularly useful in the presence of certain background gases, which can interfere with the moisture absorption peak, or introduce background noise.

The scan average value is set at the factory to a value which is an optimal tradeoff between noise reduction and system responsiveness, typically between 45-75 scans. lowering this value provides faster response time in exchange for a noisier measurement; conversely, increasing the scan average provides a smoother measurement in exchange for slower transient response.

Please contact a Panametrics application engineer before modifying this setting.

Use the left and right arrow keys to select each digit to be changed. Use the up and down arrow keys to change the value. When finished, press *enter*. The screen returns to the *user adjustments menu*.

4.2.4 Setting the dew point calculation method


- The **dew point** is the temperature at which the air is saturated with respect to water vapor over a *liquid* surface.
- The **frost point** is the temperature at which the air is saturated with respect to water vapor over an *ice* surface.

There can be a difference of several degrees C between the dew point and the frost point.

- When set for *dew/frost*, the **Aurora H2O** will report the *dew point* if the reading is above freezing, and will report the *frost point* if the reading is below freezing.
- When set for *dew point*, the **Aurora H2O** will calculate the *dew point* temperature, even if that temperature is below freezing.

<u>User Adjustments</u> PPM Level Filter (Dew Pt Cale)

To set the dew point calculation method, from the user adjustments menu select dew pt calc and press enter. The following screen appears.

Use the arrow keys to highlight the desired dew point setting and press enter. The screen returns to the user adjustments menu.

- The dew calculation should be used for compatibility with ASTM-1142/IGT-8. The tables and calculations in those reports require measurements and provide results in dew point, regardless of the actual phase (dew or frost).
- The dew/frost calculation should be used for compatibility with ISO-18453:2004, or when using a chilled mirror apparatus as a check standard.

4.3 Set up the background gas

4.3.1 Selecting the type of gas

The **Aurora H2O** TDLAS is normally calibrated to a standard gas mixture that is representative of "typical" natural gas. The primary components and concentrations of this gas mixture are:

Component	Concentration
Methane (CH4)	90.0%
Nitrogen (N ₂)	6.0%
Carbon dioxide (CO ₂)	4.0%

The process background gas is selectable from the settings menu.

- For normal operation in natural gas service, *STD* should be selected as the background gas.
- For verification testing in *pure methane*, select CH4.
- If verifying in *Nitrogen* with a known moisture concentration, *N*₂ should be selected as the background gas.

The **Aurora H2O** displays the selected background gas an indicator in the upper right corner of the LCD, adjacent to the status message. Gas Data Background Gas Mol. Wt. Z Factor Label

From the gas data menu, select background and press enter. The following screen appears.

<u>Gas D</u> Back) <u>ata</u> 9round	Gas	
N ₂	STD	CH4	
1000	CO2	Gas2	
x=Ca	ncel		

Use the arrow keys to select the desired background gas, and press *enter*. The background gas selection is now complete. Press *cancel* to return to the display page.

NOTE: Selecting either gasl or gas2 enables the label menu item. This menu opens a keyboard display that allows the user to change the 'gas1/2' label to one of their own choosing. Entering the Label menu requires the user passcode (2719).

4.3.2 Setting the Z factor

The **Z factor** is a number that accounts for the non-ideal compressibility of natural gas, and is vital for accurate calculation of mass/volume (lbs/MMSCF, mg/m³).

Gas Data	
Bkød Gas	
Z Factor	
Mol. Wt.	
L. uk-+-1	

To set the *Z* factor, from the gas data menu, select *Z* factor and press enter. The following screen appears.

Compr	ess.	Factor	(Z)
Max:	1.500	30	
0.99	87		
Min:	0.500	30	
-Sau	e x= 0	Cancel	
	A DECK AND A DECK		

Use the left and right arrow keys to select each digit to be changed. Use the up and down arrow keys to change the value. When finished, press *enter*. The screen returns to the *settings menu*.

Unless otherwise requested, the **Aurora H2O** is shipped from the factory configured for methane operation.

To change the type of background gas, from the settings menu select gas and press enter. The following screen appears.

4.3.3 Entering a label

Selecting either gas1 or gas2 enables the label menu item. This menu opens a keyboard display that allows the user to change the 'Gas ½' label to one of their own choosing. Entering the label menu requires the user passcode (2719).

To enter/edit a label:

Selecting the label menu item displays the alphanumeric entry control (see Figure 42 below).

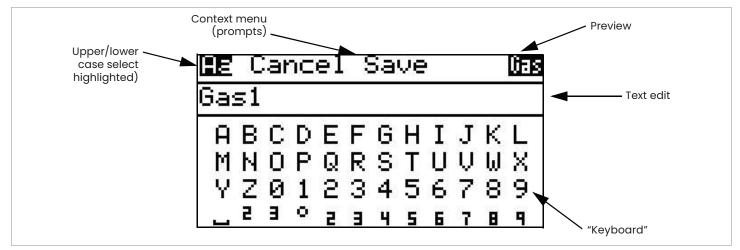
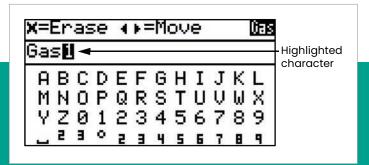


Figure 42: Alphanumeric entry control

The alpha menu is divided into three sections. The active section will have something highlighted (reverse video). The **up/down** arrows are used to move between sections.


The top section is the **context menu**. The '**Aa**' toggles the keyboard between upper and lower case (shift key). **Cancel** abandons any changes to the label. **Save** saves any changes made to the label. There is also a 'preview' of how the label will look from the main data display.

• Pressing the *down* arrow will move the highlight to the *text edit* section (see *Figure 43* below):

Note that the *context menu* has changed; it displays prompts of available key actions.

- In *text edit*, the *left* and *right* arrows move the highlight from character to character in the label. Pressing *x* erases the highlighted character.
- Pressing the *down* arrow will move the highlight to the *keyboard* section (see *Figure 44* below):

Note that the *context menu* has changed again; it displays prompts of available key actions when in the keyboard. In *keyboard*, the *left / right / up / down* arrows move the highlight from character to character in the keyboard.

Note that the character selected in *text edit* is now underlined.

- Pressing *enter* replaces the underlined character with the character highlighted on the keyboard.
- Pressing *cancel* erases the underlined character. Any characters after the erased character are shifted to the left. If there are no characters after the erased character, the underline moves to the last character in the label.
- When in the *keyboard*, pressing the *down* arrow repeatedly will move the highlight down to the next row of 'keys'. When the highlight is on the bottom row, pressing *down* will move the highlight to the top row.
- Pressing the *up* arrow will move the highlight up to the previous row of keys. When the highlight is on the top row, pressing *up* will switch to the *text edit* section.
- From the *text edit* section, pressing *up* will move the highlight to the *context menu* section.
- Choose *cancel* or *save* to exit the label entry.

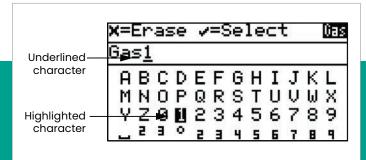
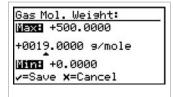


Figure 44: Alphanumeric menu with keyboard highlighted


4.3.4 Adjusting the gas offset

Comms	Pressure
Adjust…	Locale
633	Ether root
Clock	

The input information for gas molecular weight is not currently used for any moisture calculations and is reserved for future use.

- Ibs/MMSCF is calculated using IGT research Bulletin #8 and ASTM D-1142-95 referenced at 60°F, 1 ATM.
- mg/cm³ is based on ideal gas law derivation referenced at 15°C, 1.01325 kPa.

To adjust the gas molecular weight offset, from the settings menu select gas and press enter. From the gas data menu select mol. weight and press enter. The following screen appears.

Use the left and right arrow keys to select each digit to be changed. Use the up and down arrow keys to change the value. When finished, press *enter*. The screen returns to the *settings menu*.

4.4 Clock settings

Comms	Pressure
Adjust…	Locale
Gas	Editor rood
(C) OCK	

The clock settings are for informational purposes. They are used to keep track of the test analyzer start time and the laser operational time.

To reset the clock, from the settings menu select clock and press enter. The following screen appears.

4.4.1 Resetting the hour

Hour	Year
Minutes	
Month	
Date	

To reset the hour, from the *clock menu* select *hour* and press *enter*. The following screen appears.

Set Hour [0-23]:	
Maxe 23	_
08	
MITTE 0	
✓=Save x =Cancel	

Use the left and right arrow keys to select each digit to be changed. Use the up and down arrow keys to change the value. When finished, press *enter*. The screen returns to the *clock menu*.

4.4.2 Resetting the minutes

Year

To reset the minutes, from the *clock menu* select *minutes* and press *enter*. The following screen appears.

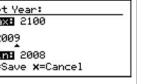
Max: 12	
01	
1	
✓=Save x =Cancel	_

Use the left and right arrow keys to select each digit to be changed. Use the up and down arrow keys to change the value. When finished, press *enter*. The screen returns to the *clock menu*.

4.4.3 Resetting the month

Thu 1/15/	2009 08:39
Hour	Year
Minutes	
(ilonith)	
Date	

To reset the month, from the *clock menu* select month and press enter. The following screen appears.


Set Month [1-12]: Max: 12 01 Mine 1 ✓=Save **x**=Cancel

Use the left and right arrow keys to select each digit to be changed. Use the up and down arrow keys to change the value. When finished, press enter. The screen returns to the clock menu.

4.4.5 Resetting the year

Thu 1/15/2009 08:39 Year Hour Minutes Month Date

Set Year: Max: 2100 2009 MINE 2008 ✓=Save X=Cancel To reset the year, from the *clock menu* select year and press enter. The following screen appears.

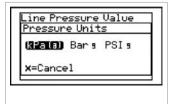
Use the left and right arrow keys to select each digit to be changed. Use the up and down arrow keys to change the value. When finished, press enter. The screen returns to the clock menu.

4.4.4 Resetting the date

Hour	Year
Minutes	
Month	
Date	

To reset the date, from the *clock menu* select date and press enter. The following screen appears.

Set Date:	
Max: 31	
08	
1	
✓=Save X=Cancel	


Use the left and right arrow keys to select each digit to be changed. Use the up and down arrow keys to change the value. When finished, press enter. The screen returns to the clock menu.

4.5 Pressure settings

Comms	(Pressure)
Adjust…	Locale
Gas	User Cal
Clock	849.47 7 .44

To reset the pressure settings, from the settings menu, select pressure... and press enter. The following screen appears.

4.5.1 Setting pressure units

To set the pressure units, from the pressure menu, select units and press enter. You can then choose from: kPa(a) (Kilopascals absolute), Bar g- (bars gauge), or PSI g- (pounds per square inch gauge).

4.5.2 Setting the source

Pressure Se	ttings
Units	
Source	
Constant	
Cal Data	

Pressure Settings Line Pressure Source: (COTSC) Live Remote x=Cancel To reset the source, from the *pressure menu*, select *source* and press *enter*. The following screen appears.

Use the left and right arrow keys to select the line pressure source. Live accepts a pressure value from a pressure transmitter and *remote* accepts a value via a modbus connection. To set a constant value, select *constant* and press *enter*. The screen returns to the *pressure menu*.

4.5.3 Changing the constant

So	urc	e		
Co	nst	tant	1	
ć 6	1 D	64 h.		

If the pressure source selected is *constant*, to reset its value, select *constant* from the *pressure menu* and press *enter*. The following screen appears.

Enter Line Pressure: NEXE +3500.000 +0101.325 kPa NEXE +0.000 v=Save X=Cancel Use the left and right arrow keys to select each digit to be changed. Use the up and down arrow keys to change the value. When finished, press *enter*. The screen returns to the *pressure menu*.

NOTE: data entry for this setting is only in kPa.

4.5.4 Editing pressure calibration

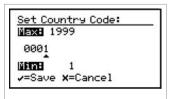
Pressure input in this section is used only for equivalent dew point calculations. Equivalent dew point is the dew point of the process gas at the process pressure. Input a "constant" value if the line pressure is at a normal pressure, or use an external pressure transmitter to input a "live" pressure input into the **Aurora H2O** analyzer.

Pressure Settings Line Pressure Source: Constant (EV2) X=Cancel	To edit the pressure calibration, from the <i>line</i> <i>pressure source menu</i> , select <i>live</i> and press <i>enter</i> . The following screen appears.	Live Pressure Zero Select Cal Point (Edit Pressure Value) Edit Input Value	To edit the <i>pressure value</i> , use the up and down arrow keys to select edit <i>pressure value</i> and press <i>enter</i> . The following screen appears.
Line Pressure Value Source Constant Cal Datem	To edit the <i>calibration</i> <i>data</i> , use the arrow keys to select <i>cal data</i> and press <i>enter</i> . The following screen appears.	Enter Line Pressure: WEXH +3500.000 +0000.000 kPa NUTH +0.000 v=Save x=Cancel	Use the left and right arrow keys to select each digit to be changed. Use the up and down arrow keys to change the value. When finished, press <i>enter</i> . The screen returns to the previous menu.
Edit Pressure Cal Select Cal Foint Edit Pressure Value Edit Input Value	To select the <i>calibration</i> <i>point</i> , use the up and down arrow keys to highlight select <i>cal point</i> and press <i>enter</i> . The following screen appears.	Live Pressure Zero Select Cal Point Edit Pressure Value (Edit Input Value)	To edit the <i>input value</i> , use the up and down arrow keys to select <i>edit input</i> <i>value</i> and press <i>enter</i> . The following screen appears.
Edit Pressure Cal Select Cal Point: Merro Span X=Cancel	Use the left and right arrow keys to select <i>zero</i> or <i>span</i> and press <i>enter</i> . The screen returns to the previous menu.	Enter Line Signal: MEXE 22.000 04.000 mA MEXE 0.000 V=Save X=Cancel	Use the left and right arrow keys to select each digit to be changed. Use the up and down arrow keys to change the value. When finished, press <i>enter</i> . The screen returns to the

previous menu.

4.6 Regional settings

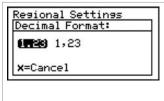
This section enables the setting of regional information, depending on the location of the **Aurora H2O**.


To reset the regional settings, from the *settings* menu, select *locale...* and press *enter*. The following screen appears.

NOTE: Locale settings for your order have been set at the factory and are <u>access code</u> protected. If you determine a need to access *regional settings*, contact the factory for assistance.

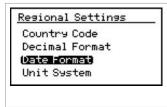
4.6.1 Setting the country code

To edit the country code, from the regional settings menu select country code and press enter. The following screen appears. A passcode is required to make changes.


Use the left and right arrow keys to select each digit to be changed. Use the up and down arrow keys to change the value. When finished, press *enter.* The screen returns to the *regional settings menu.*

- Country codes = international telephone country codes.
- Default = 1 for U.S.
- **Option** = 81 for Japan is available to conform to METI requirements.

4.6.2 Setting the decimal format

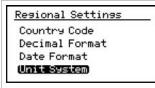

Regional Settings	
Country Code	
(Decimal Format)	
Date Format	
Unit System	

The decimal format option determines whether a decimal [.] or a comma [,] is used as the decimal separator. To edit the decimal format, from the regional settings menu select decimal format and press enter. The following screen appears.

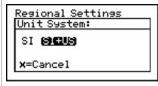
Use the left and right arrow keys to select a decimal [.] or a comma [,] as the decimal separator and press *enter*. The screen returns to the *display menu*.

4.6.3 Setting the date format

To edit the date format, from the *regional settings menu* select *date format* and press *enter*. The following screen appears.


MIDIY DAMAY Y-M-D	egio Date	<u>nal Setti</u> Format:	.ngs
TRACK MARTINESSES AND ADDRESSES TO COMPARE	M/D/	🖞 D/M/Y	Y-M-D
x =Cancel	x=Ca	ncel	

Use the left and right arrow keys to select the desired date format and press *enter*. The screen returns to the previous display.


4.6.4 Setting the unit system

IMPORTANT

If the country code (see Setting the country code on page 45) has been set to 81 (Japan) the unit system menu is not available.

To select the unit system to be used for measurements, select *unit system* and press *enter.* The following screen appears.

Use the left and right arrow keys to select the *unit system* desired [SI = only metric units are available in the selection menus; SI + US = both metric and English units are available in the selection menus] and press *enter*. The screen returns to the *regional settings menu*.

NOTE: Changing the *unit system* setting from *SI+US* to *SI* in the above menu will **not** immediately change the current *display* or *outputs* units. This is because it is not possible for the **Aurora H2O** to know the *SI* measurement units desired by the operator to replace any currently displayed or output English units. However, the next time the operator selects different display (see *Selecting primary units on page 27*) or outputs (see *Selecting output units on page 29*) units, only *SI* units will be available in the menu.

4.7 User calibration

Beginning with software revision H2O.001.F, the **Aurora H2O** supports a two-point user calibration for use in methane/ natural gas. This is provided so that a field calibration can be easily performed to cause the **Aurora H2O** measurement to correspond to a calibration gas or other moisture device. The user calibration is independent from, and does not affect, the factory calibration. The **Aurora H2O** can be quickly switched between user and factory calibration at any time.

When a user calibration is active, an asterisk (*) will appear in the upper left corner of the primary display.

Before the calibration can be performed, the **Aurora H2O** must be operating correctly in methane or natural gas, with methane selected as the *background gas*.

Comms	Pressure
Adjust…	Locale
Gas	User Cal
Clock	

Choose settings... from the main menu. A user cal... selection is now provided.

NOTE: If the **Aurora H2O** is set for Nitrogen as the background gas, the *user cal* selection will be disabled/grayed out.

User Passcode:

0000

✓=Save **x**=Cancel

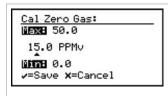
The **Aurora H2O** will prompt for the *user* passcode [2719]

Status	Read Seam
Zero Sar	(He Onhired
Se an Gar	(H4 Soul ar
Read Day o	

By default, the **Aurora H2O** is operating with the *factory* calibration, so the user calibration menu is disabled with the exception of the status selection.

User Calibration
Active Calibration:
Factory (1999

x=Cancel

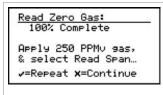

Select status, and choose user as the active calibration.

User Calibration	
Status	Read Span
Zero Gas	CH4 Offset
Span Gas	CH4 Scalar
Read Zero	

The *user calibration* menu is now enabled.

The selections on the *user calibration menu* include the following functions:

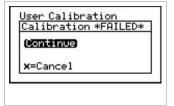
Item	Purpose
Zero gas	User specifies the water concentration, in PPMv, of the "zero", or dry gas
Span gas	User specifies the water concentration, in PPMv, of the "span", or cal/wet gas
Read zero	The Aurora H2O will read the signal while exposed to the zero gas.
Read span	The Aurora H2O will read the signal while exposed to the span gas, then determine the CH4 offset and scalar calibration values.
CH4 offset	Permits the user to view/edit the calculated offset term.
CH4 scalar	Permits the user to view/edit the calculated scalar (gain) term.



First select the zero gas and span gas items, to specify the cal gases to be used. The zero gas must be in the range of 0.0 to 50.0 PPMv water. It is recommended that the zero gas be 10.0 PPMv or higher for best results. The span gas must be in the range of 0.0 to 5000.0 PPMv water. It is recommended that the span gas be 500.0 PPMv or lower for best performance.

Cal Span Gas: Maxe 5000.0

0250.0 PPMv MINE 100.0 V=Save X=Cancel Apply the *zero* gas, and wait for the **Aurora H2O** reading to stabilize.


Read Zero Gas: 19% Complete **NOTE:** The user can exit to the display and return to the *user cal menu* without affecting the calibration procedure.

When the reading is stable, select *read zero*. The **Aurora H2O** performs multiple measurements for approximately 15 seconds, indicating its progress. When the readings are complete, you will be prompted to apply the span gas, and continue. If there is doubt about the stability of the zero gas, the reading can be repeated at this point.

Apply the span gas, and wait for the **Aurora H2O** reading to stabilize.

When the reading is stable, select read span. The **Aurora H2O** uses the current measurement, and immediately calculates the new calibration. If the calculated values are determined to be valid, the **Aurora H2O** will display "calibration ok" and prompt you to save the results, or cancel. If the values are not valid, the Aurora will display "calibration *FAILED*", and prompt you to continue. On a cal failure or cancel, no change is made to the user calibration values.

The CH4 offset and CH4 scalar items can be used to view or modify the calculated calibration points, if desired.

NOTE: The default values for the *CH4 offset* is 0.0 and the *CH4 scalar* is 1.0. These defaults are NOT the same as the *factory calibration*! Making the *user cal* active without performing the actual calibration will adversely affect the accuracy of the **Aurora H2O**. If there is any doubt about the quality/accuracy of the gases used, the **Aurora H2O** should be returned to the *factory* calibration using the *status* item.

4.8 Service settings

CAUTION!

The service settings menu should be used by factory-trained personnel only.

4.9 Aurora H2O information

Main Menu	
Display…	Service
Outputs	(About)
Alarm	LOCK
Settings	

4.9.1 Checking the ID

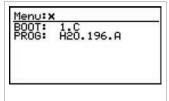
About Aurora **UD** System Status Software Versions **Gas Composition**

To check identification information, select *ID* and press *enter*. A screen similar to the following appears.

To check the **Aurora H2O** information, from the *main*

menu select about and

screen appears.


press enter. The following

<u>Menu:x</u> GE Sensing Aurora/HzO Copyright © 2008 General Electric Co. Unit SN: Laser SN:Unknown. To return to the about menu, press enter.

4.9.3 Checking the software

About Aurora
ID
System Status
(Software Versions)
Gas Composition
L

To view the software versions being used, from the *about menu* select *software versions* and press *enter.* A screen similar to the following appears.

To return to the about menu, press enter.

4.9.4 Checking the gas composition

About Aurora	
ID	
System Status	
Software Version:	5
Gas Composition	

To view the gas content, from the *about menu* select *gas composition* and press *enter*. A screen similar to the following appears.

4.9.2 Checking the system statu

About Aurora ID Sestem Status Software Versions Gas Composition

Aurora H2O system, from the *about menu* select *system status* and press *enter*. A screen similar to the following appears.

To view the status of the

Menu:x Uptime: 0d 00h Started:6/11/2009 14:07 Start Temp: 24.32 °C Laser Hours: 1399 Uptime: is the elapsed time since the Aurora H2O was powered on or reset. Started: is the date and time that the Aurora H2O

was last powered on/reset. **Start temp**: is the laser housing temperature as measured at the last startup/reset.

Laser hours: indicates the total lifetime that the laser has been energized.

To return to the about menu, press enter.

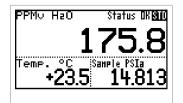
Menu:**x** Standard CH4: 90.0% N2: 6.0% CO2: 4.0%

To return to the about menu, press enter.

4.9.5 Checking the alternate gas composition

The **Aurora H2O** *TDLAS* is normally calibrated to a standard gas mixture that is representative of "typical" natural gas.

The primary components and concentrations of this gas mixture are as follows:


Component	Concentration
Methane (CH4)	90.0%
Nitrogen (N ₂)	6.0%
Carbon dioxide (CO ₂)	4.0%

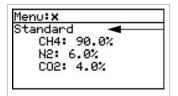
4.10 Locking/unlocking the display

Display…	Service
Outputs	About
Alarm…	(EDICK)
Settin s s…	

To lock the **Aurora H2O** against any future changes, from the *main menu* select *lock* and press *enter*. The screen returns to the standard display.

NOTE: This menu option is the same as exiting the programming menu and waiting for a keypad timeout to lock the keypad.

To unlock the **Aurora H2O** for changes, press cancel, enter, cancel as instructed in Unlocking the keypad on page 26.


For special applications, where the composition of the gas to be measured differs significantly from the standard, Panametrics can provide an alternate calibration. If this service has been ordered, the **Aurora H2O** will be shipped from the factory with both the standard and a custom calibration installed.

Display…	Service
Outputs	(About)
Alarm	LOCK
Settings	

The calibration in use can be verified at any time using the **Aurora H2O** *about...* menu. From the *main menu*, select *about* and press *enter*. The following screen appears.

About Aurora
ID
System Status
Software Versions
Gas Composition
Gas Composition

From the about Aurora menu, select gas composition and press enter. The following screen appears. An identifier label for the gas composition will be displayed above the components:

Gas composition identifier

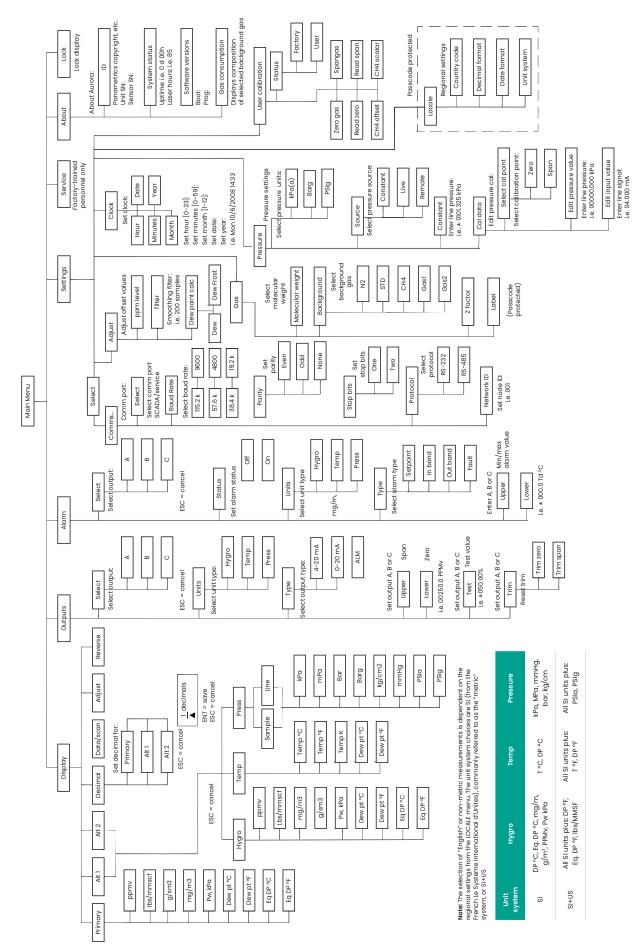


Figure 45: Programming menu map

Chapter 5. AuroraView interface software

5.1 Capabilities

Your **Aurora H2O** analyzer is shipped with a CD which includes a PC-software application called **AuroraView**. **With AuroraView**, **you can**:

- View Aurora H2O configuration Items such as alarms and outputs.
- Use the datalog function to copy data to a comma delimited .txt file which can be opened by spreadsheet applications such as Microsoft Excel.
- Plot real-time data for one or more **Aurora H2O** parameters
- Manipulate plotted data in a variety of ways such as: color, line type, zoom in/out, etc. trend tabular data in real-time.
- Show scan plots of the moisture absorption spectra.
- Copy plots from **AuroraView** to other Window applications like Microsoft Powerpoint or Word.

AuroraView does not provide functionality for the following:

- Aurora H2O software updates.
- Save the **Aurora H2O** configuration. The **Aurora H2O** has a robust design which allows the meter to recover from fault conditions without the need to upload the configuration of the meter using external software.

5.2 Requirements

AuroraView leverages a national instruments run-time environment. This environment is supported on the following operating systems with the minimum installation requirements indicated:

- 260 MB of available hard disk space 64 MB of RAM or more
- 300 MHz Pentium CPU
- Windows NT 4.0 SP6 or higher, Windows ME, Windows 2000, Windows XP
- Internet Explorer v5.0 or higher

AuroraView supports the following serial interfaces:

- RS232
- RS485 modbus

5.3 Installing AuroraView

- 1. Insert the installation CD into the optical drive on your PC.
- The installation program should launch automatically (see Figure 46 below). If it does not, select start → run → browse.
- 3. Browse to the file named *"setup.exe"* in the root directory of the CD (see *Figure 47* below). Double-click the file to start the installation.
- 4. Exit all other programs before running the installer (see *Figure 48* below).
- 5. The next screen (see *Figure 49* below) provides the opportunity to change installation locations if desired. When ready, click *next*.

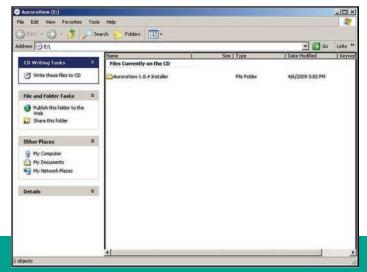
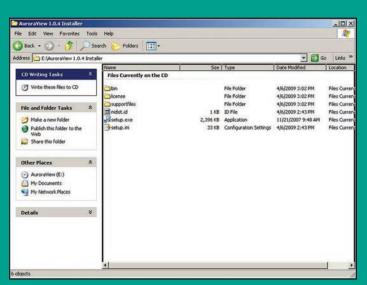



Figure 46: Initial screen

 Destination Directory

 Select the primary installation directory.

 All software will be installed in the following location(s). To install software into a different location(s), click the Browse button and select another directory.

 Directory for AuroraView

 C:\Program Files\Aurora Utilities\

 Directory for National Instruments products

 C:\Program Files\Useronal Instruments\

 Browse...

<< Back

Next >>

Cancel

- 🗆 🗙

Figure 49: Destination directory

🐙 AuroraView

Figure 47: AuroraView installer

- 6. At the next screen, accept the software license agreement (see Figure 50 below) and click next.
- The next screen (see *Figure 51* below) provides instructions for initiating the installation. When ready, click next to begin.
- 8. During installation, the screen shown in *Figure 52* below appears.
- 9. The screen shown in *Figure 53* below appears when the installation is complete.

🦉 Aurora View	뼺 Aurora Yiew
License Agreement You must accept the license(s) displayed below to proceed.	
NATIONAL INSTRUMENTS SOFTWARE LICENSE AGREEMENT	Overall Progress
ATERIALS, ALONG WITH THEIR CONTAINERS) TO THE PLACE YOU OBTAINED THEM. ALL RETURNS SHALL BE SUBJECT TO NI'S THEN CURRENT RETURN POLICY.	
 I accept the License Agreement(s). I do not accept the License Agreement(s). 	
Kenter Cancel Figure 50: Software license agreement	Kext >>> Cancel Figure 52: Overall progress

AuroraView				
Start Installation Review the following st	ummary before continuing.			
Adding or Changing • AuroraView Files				
sk the Next button to begin instal	lation Olick the Back but	on to change the	installation settings	
A the free bacon to begin instal	ours caux the back but	or to change the	n iordinauori settings.	

Figure 53: Installation Is complete

Figure 51: Starting the installation

5.4 Starting AuroraView

1. From the start menu, click programs \rightarrow AuroraView \rightarrow AuroraView (see Figure 54 below).

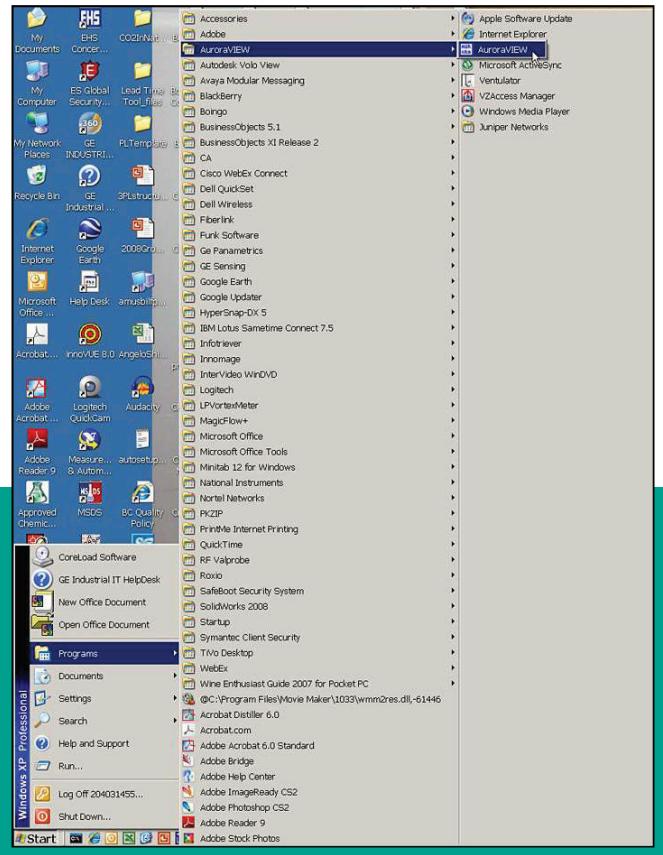


Figure 54: AuroraView in programs menu

2. AuroraView boots up and displays a screen similar to Figure 55 below.

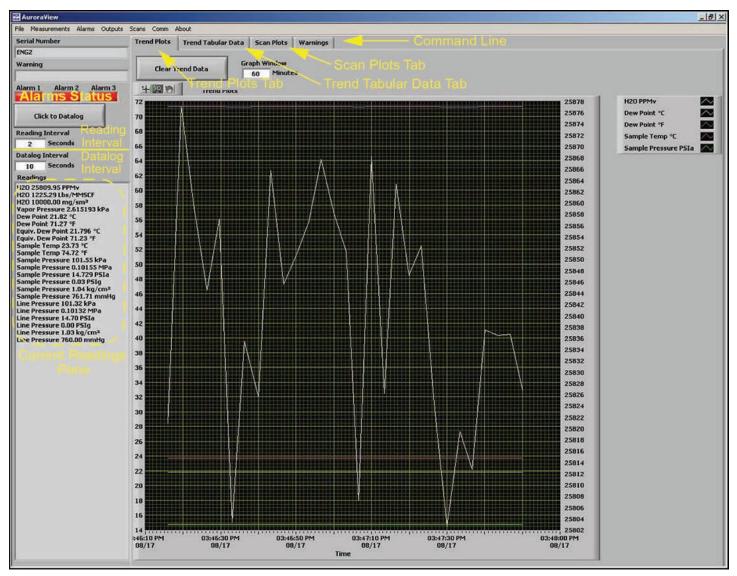


Figure 55: AuroraView main screen

5.5 Using the main menus

1. Click measurements \rightarrow config (see Figure 56 below).

Au	roraVIEW		🛗 Configure Measuremen	ts	STREET, STREET	A REAL PROPERTY AND INCOME.				
File larm	Measurements Alarms Ou Config Dew Point °C	itput	Configure Measurements		Apply Changes	Cancel				
C ead 10 atal	Dew Point °F Equivalent Dew Point °C Equivalent Dew Point °F Sample Temperature °C	* * * *	Measurement Concentration PPM Measurement Concentration Lbs MMSCF	Displayed As H2O Displayed As H2O	Unit String PPMv Unit String Lbs/MMSCF	Digits Of Precision 2 Digits Of Precision 2 2	J	Plot Plot Plot	2	Use Second Axis
Datal Sample Temperature °F 30 PCB Temp °C Reac Block Temp °C Dew Peak Index	• • •	Measurement Concentration mg/m^3 Measurement Vapor Pressure kPa	Displayed As H2O Displayed As Vapor Pressure	Unit String mg/sm ³ Unit String kPa	Digits Of Precision 2 Digits Of Precision	I⊽ Read	Plot F Plot	Datalog	Use Second Axis	
amr CB 1 lock eak eak	Peak Value Raw Peak Value Adj Lobe Raw Lobe Adj	* * *	Measurement Dew Point C Measurement	Displayed As Dew Point Displayed As	Unit String	6 Digits Of Precision 2 Digits Of Precision	I⊽ Read I⊽ Read	Plot V Plot	Г	Use Second Axis
nter onc igna	Raw Avged Lobe Avged External Pressure kPa	• • •	Dew Point F Measurement Equivalent Dew Point C	Dew Point Displayed As Equiv. Dew Point	oF Unit String o⊂	2 Digits Of Precision	I⊽ Read I⊽	I⊽ Plot	⊂ Datalog	Use Second Axis
	External Pressure PSIa External Pressure PSIg External Pressure kg/cm ²	* * *	Measurement Equivalent Dew Point F Measurement Sample Temp C	Displayed As Equiv. Dew Point Displayed As Sample Temp	Unit String	Digits Of Precision 2 Digits Of Precision 2	I⊽ Read	Plot F Plot	Datalog	Use Second Axis
	External Pressure mmHg Internal Pressure kPa Internal Pressure PSIa Internal Pressure PSIq))))	Measurement Sample Temp F	Displayed As Sample Temp	Unit String	2 Digits Of Precision 2	1	I⊽ Plot	Г	Use Second Axis
	Internal Pressure kg/cm ² Internal Pressure mmHg Concentration PPM	* * *	Measurement Sample Pressure kPa Measurement Sample Pressure MPa	Displayed As Sample Pressure Displayed As Sample Pressure	Unit String kPa Unit String MPa	Digits Of Precision 2 Digits Of Precision 5	Read Read	Plot Flot	_	Use Second Axis Use Second Axis
	H2O Lbs/MMSCF H2O mg/m ³ Vapor Pressure kPa Signal Strength counts Ref Strength counts	* * * * *								

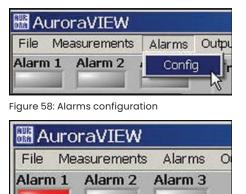
Figure 56: Configuration measurements

Unit string: set this value to the value you want to read, plot or datalog.

Digits of precision: set a numerical value (typically 0, 1, 2). This sets the resolution of the displayed measurement units to the right of the decimal place (i.e., "20.78 would result from a setting of "2").

Read: Check this box if you want to show the value in the current readings pane.

Plot: Check this box if you want to show the value in the trend plots graph AND the trend Tabular data tab.


NOTE: The other options under measurements are for individual unit types and perform the same function as checking a box under the config pop-up window (see *Figure 57* below).

File	Measurements	Alarms	Outpu	its Scans	Comm
Alarn	Config	nd Plots	Tren		
	Dew Point °C		Þ	√ Read	
C	Dew Point °F	NE	•	🗸 Plot	
	Equivalent De	w Point °	с 🕨	Second	Axis
Read	Equivalent De	✓ Datalog			

Figure 57: Other measurement options

2. Click alarms \rightarrow config

This window enables the user to configure the alarm status within the **AuroraView** application. This feature allows you to remotely configure **Aurora H2O** alarms, which are used only with modbus RTU digital output. The **AuroraView** alarms are shown in *Figure 58* and *Figure 59* below and *Figure 60 on page 57*.

Configu	re Alarms					
-	Alarm 1 Trigger	Alarm Type	Lower Limit	Upper Limit	Joad	Datalog
ON	H2O PPMv 💎	In Band	0	500000	₹	
	Alarm 2 Trigger	Alarm Type	Lower Limit	Upper Limit	Deed	Control Inc.
ON	Sample Temp °C 💎	Out of Band	24	26	Read ,⊽	Datalog
	Alarm 3 Trigger	Alarm Type	Lower Limit	Upper Limit	Dand	Detelse
ON	H2O PPMv 💎	Out of Band	10	125	Read i₹	Datalog
	Set alarm trigger drop-down	Alarm type:	Lir	nits		Datalog
roggl on/off	e alarms Apply Changes	set point, out of band, in band	Done	Alarm " indicc (see be	ation	alarm conditio on/off

Figure	60:	Alarm	status	indicators

3. Click outputs \rightarrow config (see Figure 61 and Figure 62 below).

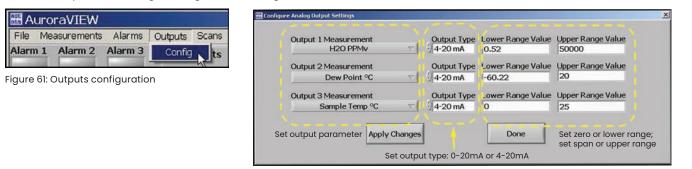
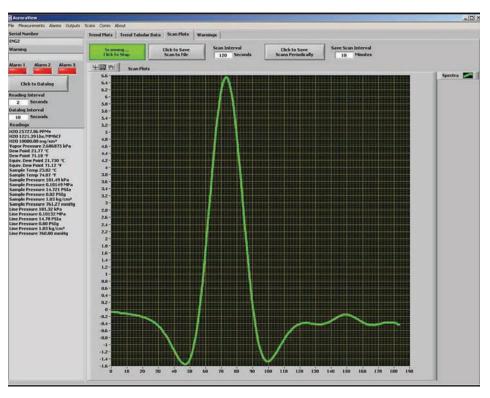


Figure 59: Other measurements options


Figure 62: Other output options

4. Click scan

This section enables you to pick the desired type of scan. The default scan is the SPECTRA scan, which shows the 2f spectral scan. This is the processed signal waveform that the Aurora H2O uses to determine the moisture concentration. Viewing this scan may assist in troubleshooting. A typical 2f spectra scan is shown in Figure 64 below. Select the scan interval in minutes to set the refresh rate at which AuroraView updates the scan plot. To enter a scan interval, click on the click to save scans periodically button, and the screen shown in Figure 63 below appears. Enter the interval and click on continue to save or cancel to reject the change.

C:\Program Files\AuroraVIEW\Data\	Scans
File Label	Save Scan Interval (Minutes)
	10

Figure 63: Save scans periodically

5. Click comms

This window (see *Figure 65* below) enables you to configure communication options. If you have more than one **Aurora H2O** on your network, you will have to establish different *network ID*'s for each analyzer using the main keypad on the **Aurora H2O**. For your PC system, you will have to select which comm port to use. This is typically COM1. The default baud rate is 115200 baud.

Network ID	
Port	
K COM1	
Baud	
115200	$\overline{\nabla}$

Figure 65: Configure communication options

5.6 Datalogging with AuroraView

- 1. In the main view (see *Figure* 67 below), click on the button *click to datalog*.
- 2. AuroraView will request a file location. Pick a file location and a file name to save your data log file. All data log files are comma delimited .txt files by default.
- 3. Once you pick a file location, AuroraView will write any parameter that has a check box with datalog checked in the main config window at the time interval set in the datalog Interval box, and the button in the main window will change to datalogging...click to stop.
- 4. When you are done datalogging, click the button to stop logging. You may now open your .txt datalog file in any application, such as Microsoft Excel, so that you can analyze that data.

6. Click help (see Figure 66 below).

This screen indicates the revision level of AuroraView.

Figure 66: Software information

Alarm 1 Alarm 2 Alarm 3	Trend Plots	Trend Tabul	ar Data Sc	an Plintor	6101	Timeout Error Additio	onal Modbus R	tead	
atalogging Click to Stop	Clear Tre	1	Graph Wind						
Reading Interval 15 Seconds Datalog Interval 60 Seconds Readings Dew Point NaN 9C	+ 123 (9) 9220.0 9215.0 9210.0 9205.0 9200.0 9195.0 9190.0 9195.0 9190.0 9195.0 9190.0	Trend Pl				ing data log file or s		nperature of	
	9170.0 9165.0 9160.0 9155.0 9155.0 9145.0 9145.0 9140.0 9135.0 9130.0 9130.0 9125.0 9120.0 9115.0 9115.0 9110.0		02:10:-			Lecal Disk (C) Business Objects Si Setu CA_APPSW Data Documents and Settings Documents and Settings DRV GELE_In_Ind_Mdl HCON CKtart Logs LPVortexMeter MSOCache Program Files Shared Source Source	p Files	C () () () () () () () () () () () () ()	
	04/06		04/	06 Time	Ny Network	File name:	1		DK

Figure 67: Datalogging with AuroraView

NOTE: When datalogging multiple parameters at intervals of five seconds or less, it is recommended to use baud rates of 57.6K or 115.2K.

5.7 Working with trend plots, trend tabular data and scan plots

1. Trend plots is a powerful graphing feature in **AuroraView**. You can graph many parameters at the same time (see *Figure 68* below).

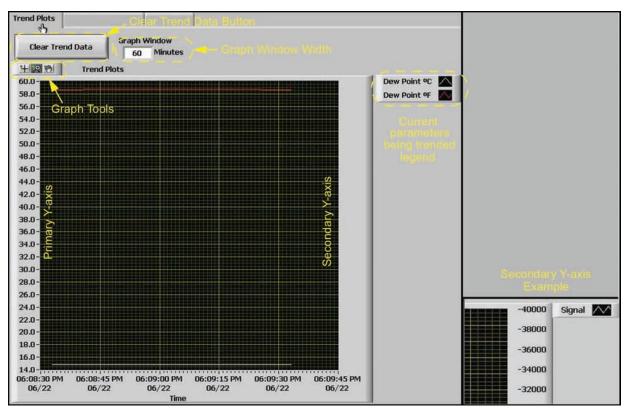


Figure 68: Using trend plots

NOTE: If you use the secondary y-axis, you may see "-" tick marks preceding the value. These are tick marks from the graphical applet and not an indication of negative values.

Common Plots	►	
Color	•	
Line Style	+	
Line Width	١.	
Anti-Aliased		
Bar Plots	•	
Fill Base Line		
Interpolation	+	
Point Style	•	
X Scale	•	
Y Scale	+	

Figure 69: Options for graphing data

Figure 70: Graph tools

- 2. If you right-click on any series of data within the graph, or you click on the current parameter being-trended item in the legend, you will see a variety of options for graphing data (see *Figure 69* below). You can change to a variety of common plots and adjust color, line style, and line width. For some data sets with lots of finite points, you may want to click *anti-aliased* which will smooth the plot line. You can also change bar plots, fill base line, interpolation and point style. *X-scale* adjusts the *x-scale*. *Y-scale* adjusts the *y-scale* and enables the secondary *y*-axis.
- 3. There is a series of graph tools available at the top left of the trend plot area (see *Figure 70* below).
 - Pointer
 - Zoom tool gives you six options as shown in *Figure 71* below.
 - Hand tool enables you to graph the trend plot area and move it around without rescaling.

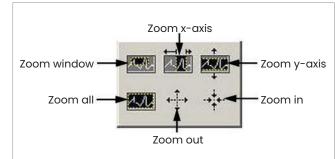


Figure 71: Zoom tool

4. Copying and pasting a trend plot can be done from **AuroraView** (see *Figure 72* and *Figure 73* below) One way to do this quickly is to simply right click over the data area and choose copy. In another application, like Microsoft Word, simply paste.

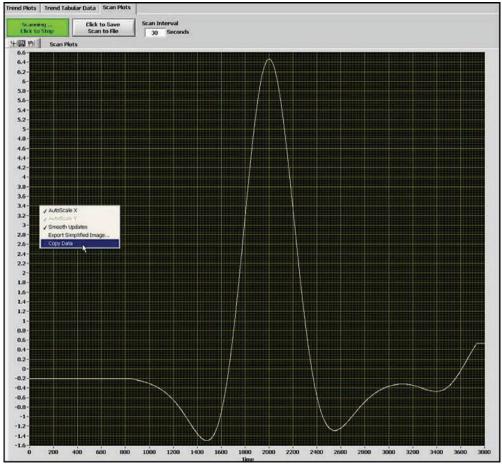


Figure 72: Copying a trend plot

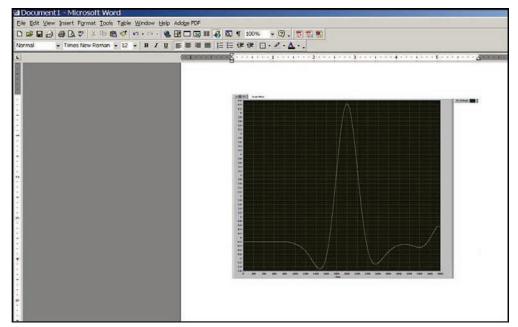


Figure 73: Pasting a trend plot

Another option is to right-click and chose the option export simplified Image (see *Figure 74* below). When you do this, a variety of image file formats will appear. A good universal option is enhanced metafile (see *Figure 75 on page 61*). Pasting an enhanced metafile will give you the ability to paste an image with an inverted color scheme as shown in the second example posted into Word (see *Figure 76 on page 62*).

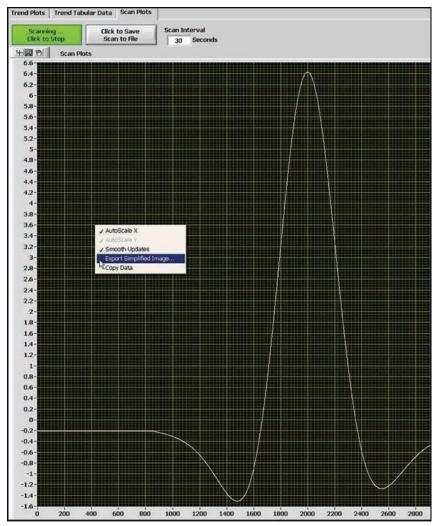


Figure 74: Exporting a simplified image

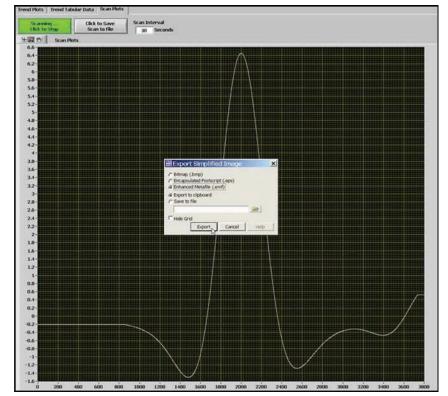


Figure 75: Selecting enhanced metafile

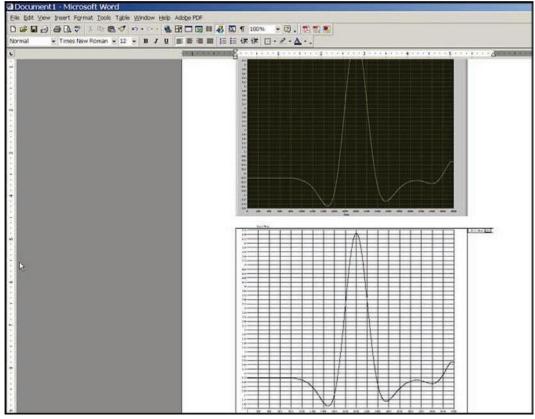


Figure 76: Pasting an enhanced metafile

Working with trend tabular data, you will be able to see data in tabular format as shown in *Figure 77* below. You can adjust column widths to see data more easily with full titles in the header row.

Trend Plots		abular Data	Scan Pl	ots									
rend Table		%											
System Tim	Dew Point	Dew Point F			1								
6:10:03 PM		58.71) i i i i i i i i i i i i i i i i i i i						
6:09:48 PM	14.82	58.68								1			
6:09:33 PM	14.81	58.67							1				
6:09:18 PM	14.83	58.70											
6:09:03 PM	14.85	58.73										[]	
6:08:48 PM	14.83	58.69											
6:08:32 PM	14.81	58.67											
			-	_	1			1					
									1			2	
							1			2 D			
					1				1	1		1	1
										1			
								-					
							1	N	()	9		2	
						-	-			-			-
								1		1			
									i i	1			
										1		1	
												1	
								0					1
								J					U
				_	-								
									· · · · · · · · ·	· · · · · · · ·	_		
					-								
		-						1	1	1		3	
					1			14		1			
					-	-	-			1			
										1			
								1					
					1		1	1		j.			
<			-								-		13

Figure 77: Trend data in tabular format

Chapter 6. Maintenance

CAUTION!

Class Im invisible laser radiation when open. Do not view directly with optical instruments.

WARNING!

Use of controls or adjustments or performance of procedures other than those specified herein may result in radiation exposure that is more hazardous than specified.

6.1 Spare parts

Table 5: Aurora H2O spare parts list				
Part no.	Description	Qty.		
704-688-12	RS-232 cable; SUB-9-F to tinned leads; 12 ft.	1		
	Aurora H2O maintenance kit			
N/A	Plastic case with foam inserts	1		
421-3230	Magnetic stylus	1		
240-199	Air blower	1		
403-161	Lens tissue package	1		
463-030	Replacement membrane filter elements	5		
240-201	Allen wrench, 5/32"	1		
240-200	Allen wrench, 3/32"	1		
\$40046393	Small screw driver	1		
403-163	Gloves	4		

6.2 Cleaning the mirror

The **Aurora H2O** analyzer may provide the *message weak* signal return – check mirror on the top line of the display, along with the red light "!" to the left of the main display. If this occurs, the mirror and/or the optical window of the measuring cell may be contaminated due to liquid or particulate coating/deposition.

NOTE: Reagent grade acetone (cas no. 67-64-1) may be needed for the cleaning process. The reagent is not supplied as part of the Aurora maintenance kit, and you must obtain the reagent from a local chemical supplier.

If the error condition *check mirror* is indicated, the first step is to clean the mirror. The process is as follows:

- 1. Turn the power to the Aurora H2O OFF.
- 2. Shut down the gas flow through the optical absorption cell.
 - a. Turn the inlet isolation needle valve (item 4 in *Figure 2 on page 3* or *Figure 3 on page 4*) to the closed position.
 - b. Ensure that the sample flow rotatmeter indicates zero flow.
- 3. Wear a pair of disposable static dissipative Latex or Nitrile (powder free) gloves.

NOTE: There are two versions of the Aurora optical absorption cell assembly (see *Figure 78 below*), each with its own mirror mounting mechanism. The mirror can be removed from the end of this cell for cleaning **without dismounting** the cell. Be sure to follow the correct mirror cleaning procedure for your version of the optical absorption cell assembly.

Class Im invisible laser radiation when open. Do not view directly with optical instruments.

WARNING!

Use of controls or adjustments or performance of procedures other than those specified herein may result in radiation exposure that is more hazardous than specified.

Figure 78: Style 1 (left) and style 2 (right) optical absorption cell/mirror assemblies

6.2.1 Instructions for optical absorption cell style 1

IMPORTANT

Use the instructions in this section only if you have identified your optical absorption cell as style 1 in *Figure 78* on page 64.

1. Remove the 6 hex bolts securing the mirror (see *Figure* 79 below) using a 5/32 inch Allen wrench. Hold the stainless steel base of the mirror with one hand while removing the last retaining bolts. The mirror is removed by pulling it straight down. There is one alignment pin (see *Figure 80 below*) to facilitate proper removal.

CAUTION!

Handle the mirror assembly with extreme care. Performance of the analyzer is critically dependent upon the mirror integrity. Do not touch the mirror surface with any tools, objects, hands or fingers.

- 2. Make a visual inspection of the mirror surface (see *Figure 81 below*). Record any observation of gross contamination. If the mirror appears to be clean, do not clean it. Instead, reinstall it carefully into the system.
- 3. If the mirror is contaminated, the first step in cleaning it is to use the air blower to blow away any particulate matter on the mirror surface. Place the mirror assembly on a flat surface and repeatedly puff the air blower to force dry clean air onto the mirror surface (see *Figure 82 below*).

Figure 79: Removing mirror end cap assembly from the absorption cell

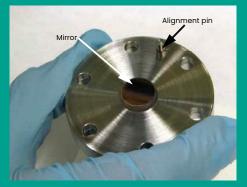


Figure 80: Handling the mirror assembly

Figure 81: Examining the mirror

Figure 82: Blowing air onto the mirror

- 4. Using a piece of lens tissue, wet a small area with a very small amount of *analytical grade acetone* (barely wet the lens tissue). Typically, one drop of acetone will suffice. Tilt the lens tissue so that the acetone drop is absorbed by the lens paper along the length of the piece (see *Figure 83 below*).
- Place the wet lens tissue on top of the mirror and drag it horizontally across the surface of the mirror (see *Figure 84 below*), ensuring minimal liquid residue/streaks are left behind on the mirror surface.
- 6. Use the air blower to blow dry air onto the surface of the mirror. Puff repeatedly until the mirror surface appears dry (see *Figure 85 below*).
- 7. Repeat steps 4-6 at least three times, using a new lens tissue each time. Each lens tissue wetted with

acetone is used only once to clean off any visible residue on the mirror surface.

- 8. Visually inspect the mirror, and record any observation of gross contamination.
- If the mirror does not appear to be clean after repeated cleanings, contact Panametrics Technical Support for further assistance.
- 10. If the mirror does appear to be clean, re-install it onto the measurement cell.
- As you line up the mirror with the measurement cell, note the "key" for properly connecting the two pieces. The mirror will align for mounting in only one position. Rotate the mirror assembly to line up the alignment pin with the alignment pin slot (see *Figure 86 below*).

Figure 83: Using analytical grade acetone

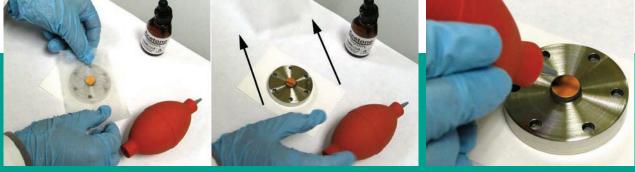


Figure 84: Dragging the wet lens tissue across the mirror

Figure 85: Drying the mirror

Figure 86: Reinstalling the mirror end cap assembly

- 12. Loosely reinstall the six retaining bolts by hand.
- Use an Allen wrench to tighten the six retaining bolts in an alternating or star pattern to achieve a uniform metalto-metal contact. Tighten the bolts just until they are snug - do not over-tighten these bolts.
- 14. Re-establish power to the Aurora H2O analyzer.
- 15. Re-establish the flow through the sample system.
- If the Aurora H2O still indicates a *check mirror* fault after normal start-up, contact Panametrics technical support for further assistance.

6.2.2 Instructions for optical absorption cell style 2

IMPORTANT

Use the instructions in this section only if you have identified your *optical absorption cell* as style 2 in *Figure 78 on page 64*.

- Using a 5/8' socket wrench to loosen the hex head of the mirror assembly, gently unscrew the mirror assembly from the bottom of the absorption cell. While Figure 87 below shows this procedure for a dismounted cell, it is NOT necessary to dismount the optical absorption cell assembly to remove the mirror.
- In cases of excessive contamination/grease entering the optical cell, this mirror could get stuck to the bottom of the cell when the end cap is removed. The mirror should be gently removed by pulling it straight down.

CAUTION!

Handle the mirror assembly with extreme care. Performance of the analyzer is critically dependent upon the mirror integrity. Do not touch the mirror surface with any tools, objects, hands or fingers.

3. Gently place the extracted mirror assembly on a clean lens tissue. Using a pair of plastic-tipped tweezers gently extract the 0.5" diameter mirror from the end cap, taking care not to touch, squeeze or nick the two O-rings in the end cap assembly (see *Figure 88* below).

Figure 87: Removing mirror end cap assembly from the absorption cell

Figure 88: Inspecting the mirror assembly

- 4. Make a visual inspection of the mirror surface, and record any observations of gross contamination. If the mirror appears to be clean, do not clean it. Instead, reinstall it carefully into the system (go to step 12).
- 5. If the mirror is contaminated, the first step in cleaning it is to use the air blower to blow away any particulate matter on the mirror surface. Place the mirror on a flat surface holding it from the sides with a pair of plastic tipped tweezers and repeatedly puff the air blower to force dry clean air onto the mirror surface (see *Figure 82* on page 65).
- 6. Using a piece of lens tissue, wet a small area with a very small amount of analytical grade acetone (barely wetting the lens tissue). Typically, one drop of acetone will suffice. Tilt the lens tissue so that the acetone drop is absorbed by the lens paper along the length of the piece (see Figure 83 on page 66 and Figure 89 below).
- 7. Place the wet lens tissue on top of the mirror and drag it horizontally across the surface of the mirror, while holding it on with a pair of plastic-tipped tweezers (see *Figure 90* below). Ensure that minimal liquid residue or streaks are left behind on the mirror surface.
- 8. Use the air blower to blow dry air onto the surface of the mirror while holding it with the tweezers. Puff repeatedly until the mirror surface appears dry (see *Figure 85 on page 66*).

- 9. Repeat *steps 6-8* above at least three times, using a new lens tissue each time. Each lens tissue wetted with acetone is used only once to clean off any visible residue on the mirror surface.
- 10. Visually inspect the mirror, and record any observation of residual contamination.
- 11. If the mirror does **not** appear clean after repeated cleaning, contact Panametrics Technical Support for further assistance.
- 12. If the mirror does appear to be clean, replace it into the mirror end cap, taking care not to disturb the two O-rings in the assembly (see *Figure 91* below), prepare to re-install the mirror end cap assembly into the optical absorption cell.
- 13. Using tweezers, insert the mirror into the hole on top of the shim, with the gold-plated side facing up. Thread the end cap into the bottom of the absorption cell tube. Secure the threaded end cap in place with a 5/8" socket wrench (see Figure 92 below).
- 14. Re-establish power to the Aurora H2O analyzer.
- 15. Re-establish the flow through the sample system.
- If the Aurora H2O still indicates a *check mirror* fault after normal start-up, contact Panametrics Technical Support for further assistance.

Figure 89: Applying acetone to lens tissue

Figure 91: Replacing cleaned mirror into end cap assembly



Figure 90: Cleaning a contaminated mirror

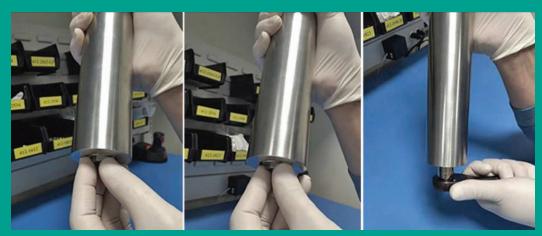


Figure 92: Replacing mirror end cap assembly into the absorption cell

6.3 Replacing the filter element

The **Aurora H2O** uses a membrane filter (see *Figure 93* below) as the secondary filter. This filter is intended to prevent liquid or particulate contamination from entering the absorption cell. The Aurora should not be operated without a filter train upstream of the unit. The membrane filter is equipped with *"flow block"* which shuts off the flow if the filter element is heavily loaded with contamination. A spring loaded check valve closes the outlet flow of the sample if the differential pressure across the filter element exceeds a threshold limit. At any given time the flow through the **Aurora H2O** can be checked by observing the rotameter. If the *"flow block"* feature shuts off the flow, do not increase the pressure. Replace the filter element and clean the filter.

Figure 93: Membrane filter

If the flow is being shut off too frequently, additional sample condition schemes, or the combination of the following, will have to be employed:

- Bypass flow needed to sweep liquids or contamination off the filter. A 10:1 bypass flow rate should be maintained.
- Additional upstream filtration
- Heat Heat tracing of the sample line and sample system components, sufficiently above both the water and hydrocarbon dew point, will keep the sample in the gas phase.

To replace the filter element, complete the following steps:

- 1. Close the inlet isolation needle valve and allow the system to fully depressurize.
- 2. Turn the filter cap counter-clockwise (see *Figure 94* below). You might need to use a channel-lock wrench to assist in loosening the cap.

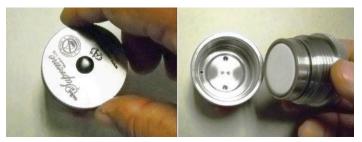


Figure 94: Removing the filter cap

- 3. Place the filter cap on a horizontal flat surface, filter side up.
- 4. Carefully remove the large O-ring (see Figure 95 below).

NOTE: Because the O-rings are reused, replacement o-rings are not included in the maintenance kit.

Figure 95: Orient the filter cap and remove the large o-ring

5. Remove the white membrane filter element and the membrane backing plate (see *Figure 96* below).

Figure 96: Remove the white filter element and the backing plate

6. Remove the small O-ring (see Figure 97 below).

Figure 97: Remove the small o-ring

7. Using a tissue, clean the filter components (see *Figure 98* below).

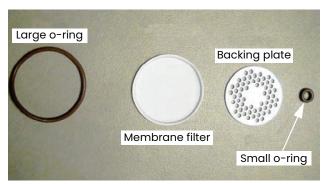


Figure 98: O-rings, membrane filter and backing plate removed

8. Re-assemble the filter, and reinstall the cap hand-tight.

[no content intended for this page]

Chapter 7. Troubleshooting

7.1 Introduction

The following are possible **Aurora H2O** analyzer conditions with details on how to deal with them.

7.2 Blank display

- 1. Is the green power led lit?
 - a Yes proceed to step 2.
 - b. No check the wiring and the fuse
- 2. Are the four arrow keys illuminated?
 - a. Yes If the keys remain illuminated for more than 12 seconds, the *boot loader* cannot find a valid *instrument program* to run.
 - b. No contact the factory for service.

7.3 Display dim or hard to read

1. Adjust the LCD brightness and contrast using the *display/adjust* menu.

7.4 Status messages and indicators

The **Aurora H2O** categorizes status messages as either *faults, warnings*, or *information*. Status messages are displayed in the upper right corner of the display, with continuous scrolling from right to left for long messages.

- A **fault** is a non-recoverable condition that can affect the quality of measurement by the **Aurora H2O**. Fault messages are accompanied by a slow flashing (!) indicator.
- A warning is a recoverable condition that can affect the quality of measurement by the Aurora H2O. Warning messages are accompanied by a rapid flashing (!) indicator.
- Information messages alert the operator to a condition that is abnormal, but does not affect the quality of measurements. Information messages are accompanied by a slow flashing (i) indicator.

Aurora H2O fault and status messages are prioritized. In case of more than one fault/status condition, the condition with the highest priority is displayed. When that condition is resolved, the next highest priority condition is displayed.

The possible status messages and indicators are summarized in *Table 6* below.

Table 6: Status messages and indicators				
Message	Condition	Description		
Status OK	Info	Aurora H2O is operating normally, no faults or other indications.		
No CH4 detected	Info	Aurora H2O is reading moisture, but cannot detect the presence of methane.		
H2O under range	Info	The moisture level is below the system detection limits.		
Warning - system overheating	Fault	The temperature inside the electronics module exceeds 85°C or the air temperature inside the sample system enclosure exceeds 68°C. The laser is powered off until the electronics module temperature is below 80°C, and the sample system enclosure temperature is below 65°C.		
FAULT: Temperature	Fault	The temperature transducer is operating out of limits, is disconnected, or has failed.		
FAULT: Sample pressure	Fault	The internal (sample) pressure transducer is operating out of limits, is disconnected, or has failed.		
FAULT: Line pressure	Fault	The external (line) pressure transmitter is operating out of limits, is disconnected, or has failed. Occurs if source of the line pressure measurement is set to "live", and no pressure transmitter is attached.		
Laser temp unstable	Warning	The temperature of the laser is not stable. This warning occurs briefly at power on, as the Aurora H2O sets the correct operating temperature. The laser is powered off until the temperature has stabilized.		
Laser Adjust at limits	Info	Aurora H2O has reached the limit for adjusting the laser power. Contact the factory for assistance.		
Laser reference fail	Fault	Aurora H2O could not detect any signal from the laser. Contact the factory for assistance.		
Weak signal return - check mirror	Info	Aurora H2O could not detect a signal returned from the sample cell, or the signal is below allowed limits. Check mirror for contamination.		
FAULT: TEC FAIL	Fault	Aurora H2O has detected a failure in the laser temperature control. Contact the factory for assistance.		
WARNING - Sample pressure TOO HIGH	Warning	The pressure in the Aurora H2O sample cell is greater than 212 kPa (30.75 psia). Verify regulator and flow settings; check for blocked vent line or excessive back pressure.		
ERROR: TEC setpoint out of range	Fault	The Aurora H2O temperature controller is/was set beyond its operating limits. Contact the factory for assistance.		
Service req: ###	Fault	Aurora H2O has detected a fault condition that has no associated status message. Contact the factory for assistance.		

7.5 No flow measurement indicated on Aurora H2O measurement cell outlet

Check to make sure that the outlet of the **Aurora H2O** is venting to atmospheric pressure. Ensure that the sample system valves are configured correctly and that the **Aurora H2O** internal pressure regulator is capable of a barely positive pressure setting. Check/replace the filter element in the coalescer/filter as described in *Chapter 6. Maintenance on page 63.*

7.6 Verifying Aurora H2O performance in the field

There are two methods for verifying the performance of the **Aurora H2O** in the field. The first method is to use a portable hygrometer such as *Panametrics' PM880* portable hygrometer. The second method is to use a moisture generator or standard gas cylinder.

7.6.1 Using a portable hygrometer

One quick spot check that can be done, that is relatively easy to do and requires minimal set-up time and no consumables, is to use a second hygrometer. *Panametrics* recommends using a *PM880 portable hygrometer* (see *Figure 99 below*) for this purpose, with a recently calibrated aluminum oxide moisture probe.

Figure 99: PM880 portable hygrometer

The *PM880* can be connected to the outlet of the **Aurora H2O** analyzer, using the portable sample system with the aluminum oxide moisture probe, to verify the system. The response time of the portable hygrometer is limited, as the sensor is typically exposed to air during movement to the sample point. So, it is recommended that the sample gas remains flowing through the portable sample system on the sample outlet of the **Aurora H2O** until equilibrium with the moisture concentration of the sample gas is reached. You can use the data-logging capability of the PM880 to determine when steady-state conditions are reached. Consult *Panametrics* if you have application questions regarding this process.

7.6.2 Using a moisture standard

The best moisture standard to use is one generated by a moisture generator as a flowing reference, due to the fact that static moisture standards in cylinders have limited capability and reliability. A moisture generator such as Panametrics' MG101 moisture generator (see *Figure 100 below*) can be used for this purpose.

Figure 100: MG101 moisture generator

However, a moisture generator is typically used only in an indoor location with reasonably good temperature control. In the field this is not always practical, so a more convenient option would be to use a static moisture standard in a gas cylinder. Consult with your local specialty gas supplier about standards for moisture. Based on application experience, Panametrics recommends the following guidelines regarding moisture standards in gas cylinders:

- Use passivated, aluminum gas cylinders only.
- Do not use the cylinder when the pressure falls below 50% of the original pressure supplied by the vendor (typically 1500-1800psig).
- Use the gas cylinder for moisture values of 50–100 ppm.
- Use a moisture standard having a background gas of nitrogen (N2).
- Mix the moisture standard for 10 minutes prior to use, following the manufacturer's guidelines (rolling the cylinder is typical).
- Use the gas cylinder at the nominal temperature at which the cylinder was tested by the manufacturer.

Whether using a moisture generator or a standard moisture gas cylinder, the source gas should be connected to the **Aurora H2O** using the PURGE INLET on the analyzer. Ensure that the sample gas pressure is regulated to a just barely positive pressure and establish gas flow from the purge inlet to the **Aurora H2O** measurement cell.

7.7 Background selection lockout

To prevent accidental selection or tampering, the background menu option can be disabled using a mechanical switch located behind the **Aurora H2O** display. Access to the switch requires removal of the cover, and should be performed only in non-hazardous conditions.

NOTE: Unless otherwise requested, the Aurora/H2O is shipped with the background selection *unlocked*.

The lockout switch is positioned to the right of the laser indicator (see *Figure 101 below*). When the switch is in the *up* position, the background selection menu is *unlocked*. When the switch is in the *down* position, the background selection menu is *locked*.

Figure 101: Background selection lockout switch location

Attempting to access the *background gas selection* menu with the switch in the *locked out* (down) position will result in the following message being displayed:

<u>Menu**:x**</u> Gas select is locked. Use Gas Lockout switch to unlock.

Appendix A. MODBUS RTU/RS485 communications

A.1 Introduction

The **Aurora H2O** supports digital communications using the modbus/RTU protocol, with 2-wire RS-485 or 3-wire RS-232C as the physical layer. data rate can be specified at rates from 4800 to 115200 bits per second (bps), with selectable parity.

Aurora H2O has two physically separate communications ports. Both ports can be selected for either RS-232 or RS-485 operation, and **Aurora H2O** can communicate with both ports simultaneously.

NOTE: Aurora H2O supports the modbus/RTU protocol as defined in: *MODBUS application protocol specification, V1.1b* and *MODBUS over serial line specification and implementation guide V1.02*.

NOTE: The above referenced specifications are available from the modbus organization at http://modbus-ida.org.

A.2 Modbus functions and data types

The modbus functions supported by Aurora H2O include:

- (0x03) read holding registers
- (0x04) read input registers
- (0x08) diagnostics (serial line only) only supports echo subcommand
- (0x10) write multiple registers
- (0x11) report slave ID (serial line only)
- (0x2B/0x0E) read device Identification only supports basic device identification tags, which are:
 - Vendor name
 - Product code
 - Revision number

Aurora H2O supports data types of *integer* and *double/float*. Integer data types are always four (4) bytes long and should be read with a request for two registers (two bytes per each register, two registers total) at the address. Double/float data types provide eight (8) byte double precision data or four (4) byte single precision data, depending on how many registers are requested. Four registers are used for double data types, and two registers are used for single precision data types.

A.3 Modbus registers

All registers denoted with a bullet (•) in the read-only column are read-only registers and should be read with the function "read input registers." All other registers can be read and written with "read holding registers" or "write multiple registers."

NOTE: The modbus register address map supported by Aurora H2O is shown in Table 7 below.

Table 7: Modbus register map						
Function	Parameter	Description	Range/state	Addr	Data type	Read only
System status ¹	Status register			0	Integer	•
	Status register, latched	Write 0 to clear		1000	Integer	
Display	Data/plot	Select plot or data display view	0 = data view 1-60 = plot view duration, in minutes	1010	Integer	
	Primary units	Measurement unit to display	Reg. address of meas.	1100	Integer	
	Primary decimals	# of decimal places to display	Measurement dependent	1110	Integer	
	Alt 1 (left) units	Measurement unit to display	Reg. address of meas.	1200	Integer	
	Alt 1 (left) decimals	# of decimal places to display	Measurement dependent	1210	Integer	
	Alt 2 (right) units	Measurement unit to display	Reg. address of meas.	1300	Integer	
	Alt 2 (right) decimals	# of decimal places to display	Measurement dependent	1310	Integer	
Analog output	Output 1	Trim sequence start/ resume live output ²		2100	Integer	
		Units	Reg. address of meas.	2110	Integer	
		Туре	0 = 4-20mA, 1 = 0-20mA	2120	Integer	
		Trim reading zero	3.0 ~ 5.2	2140	Double/float	
		Trim reading span	10.0 ~ 22.2	2150	Double/float	
		Upper of value	-10000 ~ 10000	2160	Double/float	
		Lower of value	- 10000 ~ 10000	2170	Double/float	
		Test	% value of output, 0~100	2180	Double/float	
	Output 2	Trim sequence start/ resume live output ²		2200	Integer	
		Units	Reg. address of meas.	2210	Integer	
		Туре	0 = 4-20mA, 1 = 0-20mA	2220	Integer	
		Trim reading zero	3.0 ~ 5.2	2240	Double/float	
		Trim reading span	10.0 ~ 22.2	2250	Double/float	
		Upper of value	-10000 ~ 10000	2260	Double/float	
		Lower of value	- 10000 ~ 10000	2270	Double/float	

Table 7: Modbus register map						
Function	Parameter	Description	Range/state	Addr	Data type	Read only
Οι		Test	% value of output, 0~100	2280	Double/float	
	Output 3	Trim sequence start/ resume live output ²		2300	Integer	
		Units	Reg. address of meas.	2310	Integer	
		Туре	0 = 4-20mA, 1 = 0-20mA	2320	Integer	
		Trim reading zero	3.0 ~ 5.2	2340	Double/float	
		Trim reading span	10.0 ~ 22.2	2350	Double/float	
		Upper value	-10000 ~ 10000	2360	Double/float	
		Lower of value	-10000 ~ 10000	2370	Double/float	
		Test	% value of output, 0~100	2380	Double/float	
Alarm	All alarm status		0 ~ 7 (bitfield)	3000	Integer	•
	Alarm 1	Status	0 = not tripped, 1 = tripped	3100	Integer	•
		Switch	0 = OFF, 1 = ON	3110	Integer	
		Units	Reg. address of meas.	3120	Integer	
		Туре	Set point = 0, in band = 1, out band = 2	3130	Integer	
		Upper	Depends on unit type	3140	Double/float	
		Lower	Depends on unit type	3150	Double/float	
Alarm 2	Alarm 2	Status	0 = not tripped, 1 = tripped	3200	Integer	•
		Switch	0 = off, 1 = on	3210	Integer	
		Units	Reg. address of meas.	3220	Integer	
Alarm		Туре	Set point = 0, in band = 1, out band = 2	3230	Integer	
		Upper	Depends on unit type	3240	Double/float	
		Lower	Depends on unit type	3250	Double/float	
	Alarm 3	Status	0 = not tripped, 1 = tripped	3300	Integer	•
		Switch	0 = OFF, 1 = ON	3310	Integer	
		Units	Reg. address of meas.	3320	Integer	
		Туре	Set point = 0, In band = 1, out band = 2	3330	Integer	
		Upper	Depends on unit type	3340	Double/float	
		Lower	Depends on unit type	3350	Double/float	

	Table 7: Modbus register map					
Function	Parameter	Description	Range/state	Addr	Data type	Read only
Settings	Adjust	PPM level offset adjust	-25.00 ~ +225.00	5210	Double/float	
		Moisture reading average filter size	10 ~ 200 samples	5230	Integer	
	Clock	Hour	0~23	5410	Integer	
		Minutes	0~59	5420	Integer	
		Month	1~12	5430	Integer	
		Date	1~28/29/30/31	5440	Integer	
		Year	2000~2099	5450	Integer	
	External pressure	Constant	0 ~ 3500.00 kPa	5510	Double/float	
		Pressure zero calibration, mA	0~22 mA	5520	Double/float	
		Pressure span calibration, mA	0~22 mA	5525	Double/float	
		Pressure zero calibration, kPa	0~3500 kPa	5530	Double/float	
		Pressure span calibration, kPa	0~3500 kPa	5535	Double/float	
		Pressure source	Constant value = 0, live sensor = 1	5540	Integer	
Device ID	Aurora H2O serial number			8100	8 character bytes	•
	Laser serial number			8200	8 character 120 bytes	•
	Calibration date	Month	1-12	8310	Integer	•
		Date	Depends on month	8320	Integer	•
		Year	2000~2100	8330	Integer	•
	System up time	MSDate	Uptime, in days	8400	Double/float	•
Measurements	Dew point	Dew point °C		9110	Double/float	•
		Dew point °F		9120	Double/float	
		Equivalent dew point °C		9130	Double/float	•
		Equivalent dew point °F		9140	Double/float	•
	Temperature	Sample temperature °C		9210	Double/float	•
		Sample temperature °F		9220	Double/float	•
	External Pressure	kPa		9510	Double/float	•
		MPa		9512	Double/float	•
		PSIa		9520	Double/float	•

Table 7: Modbus register map						
Function	Parameter	Description	Range/state	Addr	Data type	Read only
		PSIg		9530	Double/float	•
		kg/cm ²		9540	Double/float	•
		Bars		9550	Double/float	•
		mmHg		9560	Double/float	•
	Internal pressure	kPa		9610	Double/float	•
		МРа		9612	Double/float	•
		PSIa		9620	Double/float	•
		PSIg		9630	Double/float	•
		kg/cm ²		9640	Double/float	•
		Bars		9650	Double/float	•
		mmHg		9660	Double/float	•
	H ₂ O Concentration	PPM		9710	Double/float	•
		Lbs MMSCF		9720	Double/float	•
		mg/sm³		9730	Double/float	•
		g/sm³		9750	Double/float	•
	Vapor pressure	kPa		9800	Double/float	•

¹ Address 0 is the system status register, and address 1000 is the latching version of the *system status* register. That is, both registers will show the error bit if the error is currently present, but only the latching register will show it if the condition is no longer present. Writing 0 to the latching register will clear the error code it contains.

- ² The *trim sequence start/resume live output* registers for the three outputs, (address 2100, 2200, 2300) accept certain values through the *write multiple register* to trim the output current:
 - 1. Write 0 to 2x00 to select the normal mA output (proportional to measurement).
 - 2. Write 1 to 2x00 to reset the mA output trim to factory defaults.
 - 3. Write 2 to 2x00 to output the "zero" current (~4.000 mA) and accept a calibration value written to 2x40.
 - 4. Write 3 to 2x00 to output the "span"" current (~20.000 mA) and accept a calibration value written to 2x50.

NOTE: Attempting to write to trim registers 2x40/2x50 without first writing to trim state register 2x00 will fail with modbus exception 4.

At the end of calibration, write 0 to 2x00 to make **Aurora H2O** exit trim mode.

A.4 Modbus system status codes

Table 8 below lists the system status codes and descriptions. It is possible for multiple status codes to be present. The hexadecimal values represent the bit set for a given condition.

	Table 8: System status codes
Status	Description
0x00000000	Aurora H2O is operating normally, no faults or other indications.
0x0000008	Aurora H2O is reading moisture, but cannot detect the presence of methane.
0x00000010	The moisture level is below the system detection limits.
0x00000020	The temperature inside the electronics module exceeds 85°C. The laser is powered off until the temperature drops below 80°C.
0x00000040	The temperature transducer is operating out of limits, is disconnected, or has failed.
0x0000080	The internal (sample) pressure transducer is operating out of limits, is disconnected, or has failed.
0x00000100	The external (line) pressure transmitter is operating out of limits, is disconnected, or has failed. Occurs if source of the line pressure measurement is set to "live," and no pressure transmitter is attached.
0x00000200	Power supply under voltage
0x00000400	System ground fault
0x00000800	The temperature of the laser is not stable. This warning occurs briefly at power on, as the Aurora H2O sets the correct operating temperature. The laser is powered off until the temperature has stabilized.
0x00001000	Aurora H2O has reached the limit for adjusting the signal gain. Contact the factory for assistance.
0x00002000	Aurora H2O has reached the limit for adjusting the laser power. Contact the factory for assistance.
0x00004000	Aurora H2O could not detect any signal from the laser. Contact the factory for assistance.
0x00010000	Aurora H2O could not detect a signal returned from the sample cell, or the signal is below allowed limits. Check the mirror for contamination.
0x00020000	Aurora H2O has detected a failure in the laser temperature control. Contact the factory for assistance.
0x00040000	The pressure in the Aurora H2O sample cell is greater than 212 kPa (30.75 psia). Verify regulator and flow settings; check for blocked vent line or excessive back pressure.
0x00000000	The Aurora H2O temperature controller is set beyond its operating limits. Contact the factory for assistance.
Oxlyyyzzzz	Extended error code

Warranty

Each instrument manufactured by Panametrics is warranted to be free from defects in material and workmanship. Liability under this warranty is limited to restoring the instrument to normal operation or replacing the instrument, at the sole discretion of Panametrics. Fuses and batteries are specifically excluded from any liability. This warranty is effective from the date of delivery to the original purchaser. If Panametrics determines that the equipment was defective, the warranty period is:

- One year from delivery for electronic or mechanical failures
- One year from delivery for sensor shelf life

If Panametrics determines that the equipment was damaged by misuse, improper installation, the use of unauthorized replacement parts, or operating conditions outside the guidelines specified by Panametrics, the repairs are not covered under this warranty.

The warranties set forth herein are exclusive and are in lieu of all other warranties whether statutory, express or implied (including warranties or merchantability and fitness for a particular purpose, and warranties arising from course of dealing or usage or trade).

Return policy

If a Panametrics instrument malfunctions within the warranty period, the following procedure must be completed:

- 1. Notify Panametrics, giving full details of the problem, and provide the model number and serial number of the instrument. If the nature of the problem indicates the need for factory service, Panametrics will issue a RETURN AUTHORIZATION NUMBER (RAN), and shipping instructions for the return of the instrument to a service center will be provided.
- 2. If Panametrics instructs you to send your instrument to a service center, it must be shipped prepaid to the authorized repair station indicated in the shipping instructions.
- 3. Upon receipt, Panametrics will evaluate the instrument to determine the cause of the malfunction.

Then, one of the following courses of action will then be taken:

- If the damage is covered under the terms of the warranty, the instrument will be repaired at no cost to the owner and returned.
- If Panametrics determines that the damage is not covered under the terms of the warranty, or if the warranty has expired, an estimate for the cost of the repairs at standard rates will be provided. Upon receipt of the owner's approval to proceed, the instrument will be repaired and returned.

Customer support centers

Americas

U.S.A.

The Boston Center 1100 Technology Park Drive Billerica, MA 01821 U.S.A. Tel: +1 800 833 9438 (toll-free) Tel: +1 978 437 1000 E-mail: mstechsupport@bhge.com

Europe

Ireland

Sensing House Shannon Free Zone East Shannon, County Clare Ireland Tel: +353 61 61470200 E-mail: mstechsupport@bhge.com

Panametrics, a Baker Hughes Business, provides solutions in the toughest applications and environments for moisture, oxygen, liquid and gas flow measurement. Experts in flare management, Panametrics technology also reduces flare emissions and optimizes performance.

With a reach that extends across the globe, Panametrics' critical measurement solutions and flare emissions management are enabling customers to drive efficiency and achieve carbon reduction targets across critical industries including: Oil & Gas; Energy; Healthcare; Water and Wastewater; Chemical Processing; Food & Beverage and many others.

Join the conversation and follow us on LinkedIn linkedin.com/company/panametricscompany

Copyright 2021 Baker Hughes Company. All rights reserved.

910-284 Rev. J BHCS39016 (06/2021)

panametrics.com